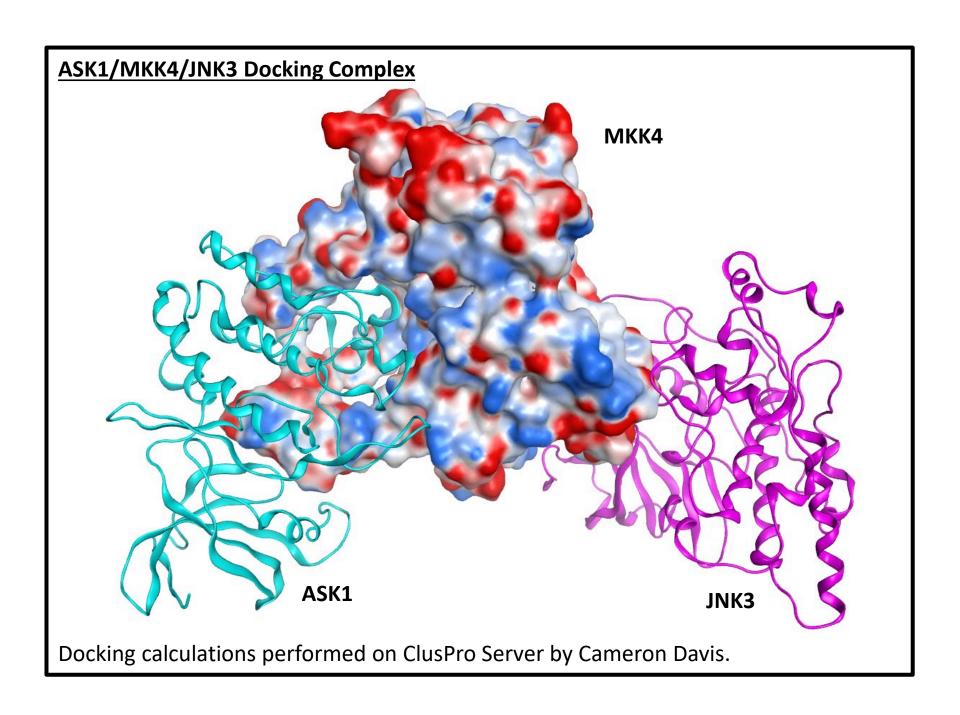
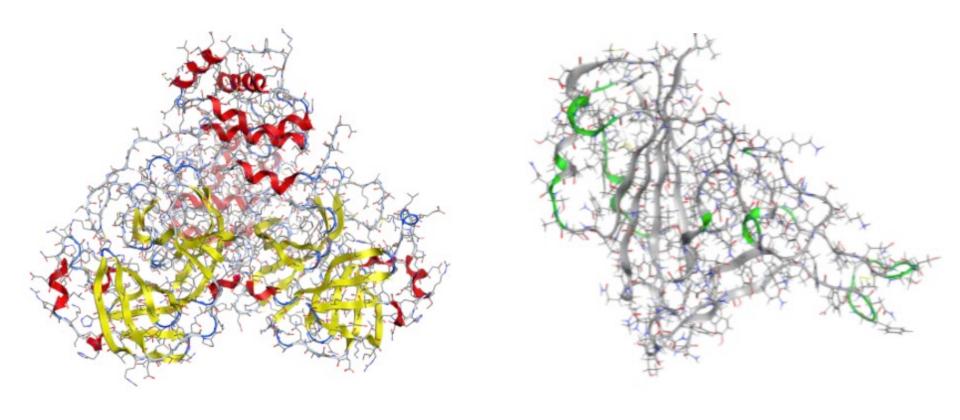
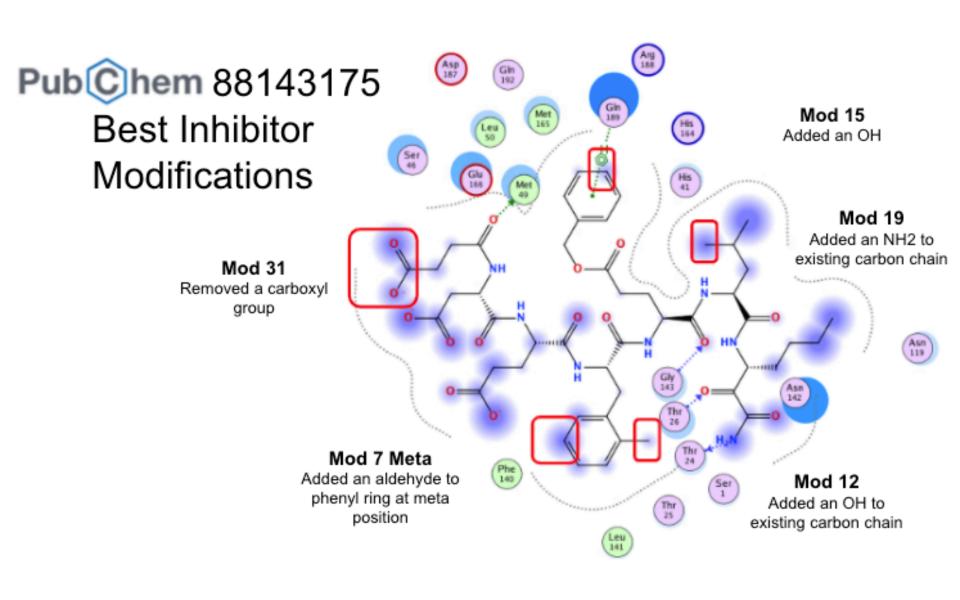

Dr. Derek Cashman


Computational Biophysical Chemistry Office: LSC-2318 / Lab: LSC-2335 dcashman@tntech.edu




2020/2021 Governor's School for Emerging Technologies

SARS-CoV-2 Main Protease

SARS-CoV-2 Receptor-Binding Domain

Thank you to research mentors: Cory Rogers, Rachel Paris and Allison Adams who assisted with this project.

Pub©hem 88143175

Modification	Change	Grid Score1	Grid VDW Energy	Grid ES Energy	Molec Weight	LogP	No. Rotatable Bonds	H-Bond Donors	H-Bond Acceptors
Mod 12	Moved C + OH meta	-100.07	-95.6	-4.47	1039.08	1.66	45	9	18
Mod 31	Removed a carboxyl	-96.24	-90.86	-5.38	982.054	2.23	42	12	13
Mod 15	Added OH para	-91.17	-90.34	-0.82	1055.08	1.17	46	14	14
Mod 7 Meta	Added OH meta	-90.49	-86.37	-4.13	1021.07	2.85	42	11	15
Mod 19	Replaced C with NH2	-88.85	-86.78	-2.07	1040.07	0.23	47	14	14

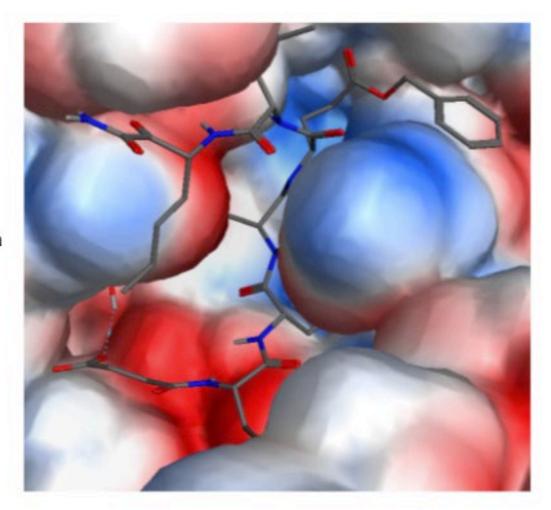
1. Grid Energies in kcal/mol; 2. Molec. Weight in g/mol

Electrostatic Docking Map of Pub Chem 88142175 (mod 12)

Moved C + OH to Meta Modification:

-100.07 kcal/mol Grid Score:

-95.6 kcal/mol Grid VDW Energy:


Grid ES Energy: -4.47 kcal/mol 1059.08 g/mol Molecular Weight:

LogP: 1.66

Rotatable Bonds: 45

H-Bond Donors:

18 H-Bond Acceptors:

Theaflavin Digallate

 Scientists at North Carolina State University found that certain chemical compounds in green tea could inhibit a particular protease in the SARS-CoV-2 virus.

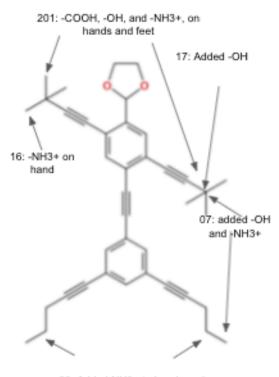
 Researched, analyzed, and docked three compounds from green tea.

 The most successful modification was adding an oxygen and aromatic ring to the theaflavin digallate base, which produced a binding free energy (\(\Delta G_{\text{Bind}} \)) of -8.99 kcal/mol.

 ADME properties of theaflavin digallate were unfavorable regarding Lipinski's Rule of Five.

added thiol (04) removed ring (04) replace OH with H (18) replace OH with I (11) added 3 methoxides (06) added aromatic ring (04)

added aromatic ring (02, 04, 214)


Kulikowski, Mick. Chemical compounds in foods can inhibit a key SARS-CoV-2 enzyme, study finds. November 30, 2020, Science Daily. https://www.sciencedaily.com/releases/2020/11/201130131445.htm

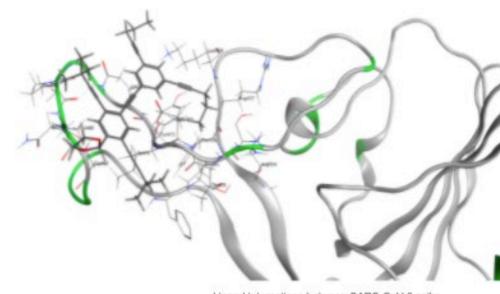
Top 7 Theaflavin Digallate Analogs

Molecule	∆G Bind (kcal/mol)	Log P	Mol. Weight (g/mol)	H-bond acceptors	H-bond donors	Toxic?	Notes
TNTECH 2021-02	-8.99	4.59	960.81	18	13	no	Highest overall
TNTECH 2021-04	-8.70	6.02	1052.9	14	10	no	
TNTECH 2021-06	-8.60	4.05	910.79	18	11	no	
TNTECH 2021-11	-8.41	-0.56	1210.36	18	13	no	Extremely high molecular weight
TNTECH 2021-214	-8.07	5.05	944.81	17	12	no	
TNTECH 2021-18	-8.04	8.38	832.81	10	5	no	Lower molecular weight, high logP
TNTECH 2021-31	-7.6	2.97	868.71	18	13	no	Lead compound

Top Five NanoKid Analogs

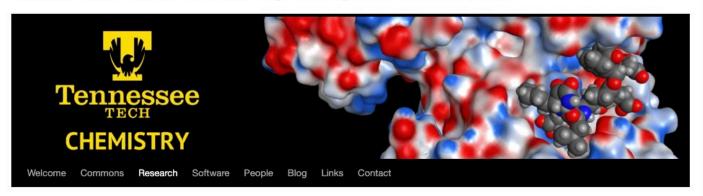
Compound/ Modification	AG (kcal/mol)	logP	Molecular Weight (g/mol)	# H-bond acceptors	H-bond donors	Toxic?
TNTECH 2021-07	-8.58	-10.31	718.62	15	10	no
TNTECH 2021-08	-8.48	-17.70	597.6	8	6	no
TNTECH 2021-16	-8.07	-12.53	599.64	8	7	no
TNTECH 2021-17	-8.05	-14.52	721.65	15	11	no
TNTECH 2021-201	-8.05	-18.4	601.64	8	8	no
NanoKid	-7.93	12.18	542.76	2	0	no

08: Added NH3+ to hands and feet in place of C


NanoKid Modification Process

Takeaways from lead compound NanoKid:

- Extremely hydrophobic
- Relatively low molecular weight
- Impressive starting binding energy
- Binds to the frustrated area in the SARS-CoV-2 spike protein


Goals and initial thoughts:

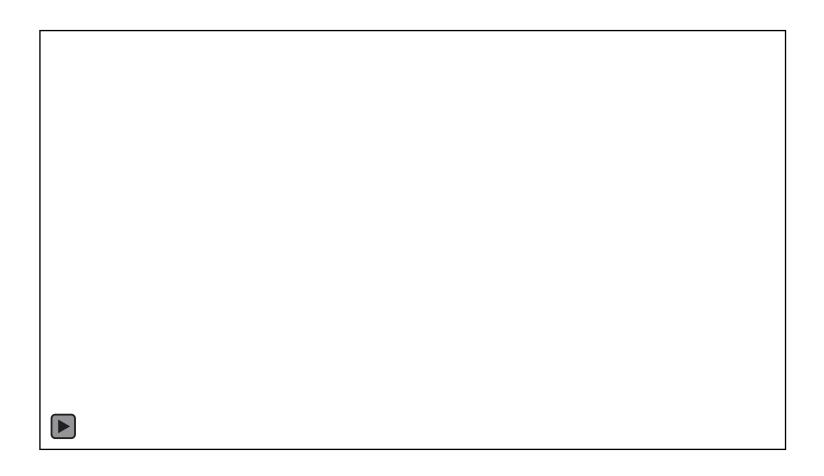
- Improve bind and decrease score
- Make hydrophilic
 - Add polar functional groups
- Keep molecular weight low
 - Add to preexisting structures on nanokid
- Avoid toxicity

Ligand interactions between SARS-CoV-2 spike protein and lead compound NanoKid

Tennessee Tech Chemistry Computer Resources

Research Computing

Computer modeling labora


TTU HPC Cluster

- Approximately 35 teraFLOPS
- 36 non-GPU compute nodes, 3 GPU nodes
- 28 Xeon CPU cores per node (> 1,000 CPUs total)
- 128 GB RAM per compute node
- Each compute node is connected to the campus network via 1 GB ethernet and each node is connected to other nodes via 56 GB InfiniBand
- 200 GB local HD space per node
- 175 TB total HD space

The computer modeling laboratory in the Labora

eight Linux workstations designed for a variety of scientific computing needs. Each

3D Printing With MOE 2020

