Calculus Readiness Self-Assessment

This Calculus Readiness Tool may be used to self-assess your preparation for Calculus I. Mastery of the concepts and skills included in this tool are critical for success in Calculus 1.

Guidelines:

- For an accurate assessment of your readiness, take this test without any help aids, including any sort of calculator.
- Other than a brief review, try not to 'study' for this assessment. You want to truly assess what you know now.
- Show all of your steps clearly so that your reasoning is clear.
- Work through the problems within a two-hour window.

When you finish, return to the TTU Math department website to find the answer document and score your work.

1. If $f(x)=\frac{x^{2}-5}{x+5}$, then find $f(a+2)$.
2. Find the slope-intercept equation of the line which passes through the point $(-5,1)$ and is parallel to the line through the points $(3,7)$ and $(1,-1)$
3. If f is a function whose graph is shown below, give the solution to the inequality $f(x)>0$.

4. Find all solutions, if any, to the following:
(a) $\sqrt{5 x+2}-4=6$
(b) $|3 x-2| \geq 1$
5. Determine whether the following functions are invertible. If the function is invertible, find the inverse. If the function is not invertible, explain why not.
(a) $f(x)=\frac{x}{x+2}$
(b) $g(x)=(x-1)^{2}+3$
6. Simplify each of the following expressions fully, so that x and y appear once.
(a) $\frac{x^{3} y^{5} x^{-2}}{x^{-2} y^{2}}$
(b) $\frac{\sqrt[4]{16 x^{6} y^{14}}}{\sqrt[5]{x^{2} y^{5}}}$
7. Given the double-angle identity $\cos (2 x)=1-2 \sin ^{2} x$, solve the following trigonometric equation. Give all solutions in the interval $[0,2 \pi]$.

$$
3 \cos (2 x)=\sin x+2
$$

8. Simplify the following expression:

$$
\frac{\frac{5}{x+h+1}-\frac{5}{x+1}}{h}
$$

9. Let $f(x)=x^{2}+3 x+7$ and $g(x)=\cos x$.
(a) Find $(f \circ g)(x)$.
(b) If $(h \circ g)(x)=e^{\cos x+7}$, find $h(x)$.
10. Give all solutions to the following trigonometric equation:

$$
3 \tan (x)+1=4
$$

11. Solve the following equation: (Hint: First multiply both sides by e^{x})

$$
e^{x}-e^{-x}=1
$$

12. Let $f(x)=\log _{10}(x)=\log (x)$.
(a) State the domain and range of $f(x)$.
(b) Find $f^{-1}(x)$.
(c) Find the exact value of $f(\sqrt{1000})+f\left(\frac{1}{10}\right)$.
13. Consider the function $f(x)=\frac{\left(9 x^{2}-4\right)(2 x+1)}{x^{3}+2 x^{2}+5 x+10}$.
(a) What is the domain of $f(x)$?
(b) What are the roots (zeroes), if any, of $f(x)$?
(c) What are the vertical and horizontal asymptotes, if any, of $f(x)$?
14. For the functions below carefully sketch each graph and give the domain and range.
(a) $f(x)=2 \sin \left(-\frac{1}{2} x\right)$
(b) The function $y=-g(2 x)-3$, given the graph of g below.

15. Find the values of the remaining five trigonometric ratios if $\tan (x)=2$ and $0<x<\frac{\pi}{2}$.
16. Given that the hyperbolic cosine function is defined as $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$ and the hyperbolic sine function is defined as $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$, simplify the following expression:

$$
5 \sinh ^{2}(x)-5 \cosh ^{2}(x)
$$

17. Solve the following equation:

$$
\log (x+2)-\log (x)=\log (3)
$$

