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Abstract

A Jacobian matrix of a general inline planar platform is studied. An inline planar platform
is a manipulator with three legs, each with RPR joints, such that the revolute joints are free
and align on each platform and the prismatic joints are powered. The configurations that
cause the Jacobian matrix to become singular form a singularity surface that must be avoided
for controllability. The Jacobian matrix is developed in the even Clifford algebra C�+(P 2) of
the projective space P 2 and its singularity surface is studied. A redundant planar platform
manipulator is shown to have a block Jacobian matrix. A composite of singularity sets is
developed for a redundant planar platform. A three-dimensional multi-platform manipulator is
discussed.
Keywords: Clifford algebras, dual quaternions, hyper-redundant robots, Jacobian matrix,
planar platform, singularity surface.

1 Introduction

Hyper-redundant robots are manipulators that have large or infinite number of degrees of kinematic
redundancy [1]. For spatial robots, this means they have more than six degrees of freedom (DOF’s)
required for the end effector to reach, with any orientation, a given point in a dextrous workspace.
A hyper-redundant robot can take on large or infinite number of shapes for a particular orientation
and position of the end effector. For this reason hyper-redundant robots are ideal for working around
obstacles or in confined workspaces. These manipulators may not have a well-defined end effector,
since for some applications the links of the manipulator are used as a gripper, which can handle
objects delicately, much the same way elephants can pick objects up with their trunks [8]. Two
common methods of constructing these robots are a serial link and a variable geometry truss structure
(VGT). Very little work has been done to solve the singularity configurations for VGT manipulators
due to their complicated structure [4]. Jacobian matrices which determine the singularities of the
end effector’s velocity and force do not reveal the singularities of the joint configurations, which
are more important since there are more of them and the shape of the hyper-redundant robot is as
important as knowing the end effector’s position.

Singularity sets for four revolute joint manipulators were studied by Long, McCarthy, and Paul [5]
using screw theory, but only the position and orientation of the end effector were considered. Ge
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and McCarthy [3] found a constraint manifold for assembly line tolerance using a certain Clifford
algebra [6]. Later, Collins and McCarthy [2] used the same Clifford algebra to develop singularity
sets for planar platforms.

The planar VGT hyper-redundant robot can be constructed by stacking planar platforms. Planar
platforms are a better choice than serial link manipulators because of better structural rigidity,
kinematic accuracy, and dynamic control [10]. Better structural rigidity is needed because a hyper-
redundant robot is heavy due to a large number of actuators. Better kinematic and dynamic accuracy
is needed because the increase in DOF’s leads to a decrease in positioning accuracy.

1.1 VGT Singularities

Collins and McCarthy [2] found a Clifford algebra representation of the ρ1i’s, the lengths of the
legs of a single platform, and their time derivatives along with a time derivative of a constraint, to
form a square Jacobian matrix. The determinant of the Jacobian, when set to zero, parameterizes
the singularity set of the platform. The work of Collins and McCarthy can be extended to find
all singularities of the hyper-redundant robots described above. The objective of this research is
to find and study singularity sets of two stacked planar platform manipulators shown in Fig. 1.
A Jacobian that parameterizes the two stacked platforms must also parameterize the individual

Figure 1: Two Stacked General Planar Platforms

platform singularities along with the singularities of the end effector. Only then it will be useful in
the study of the hyper-redundant robots.
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1.2 Paper Organization

The background information in Section 2 covers the singularity types for parallel manipulators.
Then, a particular Clifford algebra needed to represent spatial rotations and translations is con-
structed. Section 3 develops the singularity set for one platform manipulator as a review of the work
of Collins and McCarthy [2]. Section 4 develops the case for two stacked platforms. Conclusions
and recommendations can be found in Section 5.

2 Singularity Types and Clifford Algebras

Singular configurations should be avoided in robot arms. At a singularity a robot can develop
sufficiently large forces and torques that can cause damage to itself or to the environment; small
perturbations in the link parameters can cause points in the workspace to be unreachable; there may
be no solution or an infinite number of solutions to the inverse kinematics problem; the number of
degrees of freedom (DOF’s) of the robot will then change which will lead to a loss of controllability,
and the end effector motion may become unattainable or require infinite joint velocities [10, 11].

2.1 Type I, Type II, and Type III Singularities

Gosselin and Angeles [4] have identified and categorized singularities of parallel manipulators into
three types. Let θ be a vector representing joint coordinates, either an angle for a revolute joint or
a length for a prismatic joint. Let x be a vector in Cartesian coordinates representing a position
(or orientation) of the manipulator [10]. A Jacobian is formed by taking the time derivative of a
relation of the forward kinematics, given as the vector equation F (θ,x) = 0, to form the equation
Aẋ+Bθ̇ = 0, where A and B are matrices of partial derivatives with respect to x and θ. Singularities
occur when either matrix A or B becomes singular, i.e., when the rank is no longer maximum.
Singularity of type I occurs when B becomes singular, singularity of type II occurs when A becomes
singular, and singularity of type III occurs when both matrices A and B are simultaneously singular.

Type I singularities occur on the boundary of the workspace. The end effector loses one or more
DOF’s in such a way that one or more force(s) or torque(s) can be applied to the end effector without
needing to apply force or torque at the powered joint(s). Type III singularities require that certain
linkages have the same length so they can be aligned. This condition can be easily avoided in the
design phase. Type II singularities are more elusive: In this configuration, the end effector position
can be locally movable with all the input joints locked. When the manipulator has many links of
different lengths, these singularities become impossible to determine by inspection. Since type I and
III singularities can easily be avoided, type II singularities are the most interesting for us to study.

Type II singularities of parallel manipulators were parameterized using the Jacobian matrix of
the system by Sefrioui and Gosselin [10]. Singularity surfaces in the projective plane of the even
Clifford algebra for three revolute-prismatic-revolute (RPR) legged planar platforms were studied
by Collins and McCarthy [2].
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2.2 The Clifford Algebra C�+(P 3)

Ge and McCarthy [3] used the Clifford algebra C�(P 3) of a three-dimensional projective space P 3

with the quadratic form

Q =



−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0


 . (1)

A general element H in C�+(P 3) is then given as

H = h1e2e3 + h2e3e1 + h3e1e2 + h4 + h0
1e4e1 + h0

2e4e2 + h0
3e4e3 + h0

4e1e2e3e4, (2)

where the hi’s and the h0
i ’s are real and e2

4 = 0. H can also be written as a dual quaternion, namely,

H = h1i + h2j + h3k + h4 + h0
1εi + h0

2εj + h0
3εk + h0

4ε, (3)

where

ε = e1e2e3e4, i = e2e3, j = e3e1, k = e1e2, (4a)
εi = e4e1, εj = e4e2, εk = e4e3. (4b)

Quaternions are generalized complex numbers where the imaginary elements multiply as i2 = j2 =
k2 = −1, ij = k = −ji, jk = i = −kj, and ki = j = −ik [6]. The dual element ε squares to zero
and commutes with i, j, and k. As defined, the dual quaternion (3) is an element of C�+(P 3).

The case for planar motions requires that the third basis element e3 be nonexistent. Without
the terms with e3, (2) reduces to a projection onto the even Clifford subalgebra C�+(P 2)

H = h0
1 e4e1︸︷︷︸

εi

+h0
2 e4e2︸︷︷︸

εj

+h3 e1e2︸︷︷︸
k

+h4, (5)

and then (3) gives a planar quaternion

H = h0
1εi + h0

2εj + h3k + h4. (6)

2.3 C�+(P 3) Components from the Screw Parameterization

Chasles Theorem. Every rigid body motion can be realized by a rotation about an axis combined
with a translation parallel to that axis.

Any rigid body displacement can be represented by screws. A screw consists of a rotation by
an angle θ1 about an axis L, and a translation along the same axis by a distance d (see [9]). Let
F be a fixed frame and let M be a moving frame attached to the end effector. The homogeneous
transformation matrix which describes M in F coordinates is given by

T =
[
A d
0 1

]
, (7)
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where A is a 3 × 3 orthogonal matrix that describes the orientation of M relative to F, and d is a
3 × 1 translation vector that locates the position of the origin of M relative to F. To describe the
screw motion of M, a unit vector s = (sx, sy, sz) on L and the rotation angle θ1 about L can be
found from the matrix A as

cos(θ1) =
1
2
(a11 + a22 + a33 − 1), (8)

sx =
a23 − a32

2 sin(θ1)
, sy =

a31 − a13

2 sin(θ1)
, sz =

a12 − a21

2 sin(θ1)
, (9)

where aij is the ij-th element of A. Since A is orthogonal, McCarthy [7] used Cayley’s formula to
find Euler parameters of the rotation as

h =



sx sin( θ1

2 )
sy sin( θ1

2 )
sz sin( θ1

2 )
cos( θ1

2 )


 , (10)

(here h = (h1, h2, h3, h4) from (2)). Since s = [sx, sy, sz] is a unit vector, vector h satisfies the
constraint h · h = 1 where · is the usual Euclidean dot product. Let c be a position vector from the
origin of F to some point on L and let s∗ = c × s. Ge and McCarthy [3] found the components of
h0 = (h0

1, h
0
2, h

0
3, h

0
4) to be

h0 =




θ1
2 sx cos( θ1

2 ) + s∗x sin( θ1
2 )

θ1
2 sy cos( θ1

2 ) + s∗y sin( θ1
2 )

θ1
2 sz cos( θ1

2 ) + s∗z sin( θ1
2 )

− θ1
2 sin( θ1

2 )


 . (11)

The outer product h × h0 = 0 is a second constraint on H. Then the dual quaternion H = (h,h0)
has six free parameters because of the two constraints.

In the case of planar displacements, where the z axes of M and F are perpendicular to the plane
of motion, (10) and (11) reduce to

h =




0

0

sin( θ1
2 )

cos( θ1
2 )


 , and h0 =




1
2x1 cos( θ1

2 ) + 1
2y1 sin( θ1

2 )

− 1
2x1 sin( θ1

2 ) + 1
2y1 cos( θ1

2 )

0

0


 . (12)

Since the first two components of h and the second two components of h0 are always zero for planar
displacements, Ge and McCarthy [7] use

q =




1
2x1 cos( θ1

2 ) + 1
2y1 sin( θ1

2 )

− 1
2x1 sin( θ1

2 ) + 1
2y1 cos( θ1

2 )

sin( θ1
2 )

cos( θ1
2 )


 (13)
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to represent the position of M relative to F. Putting q = (q1, q2, q3, q4) into (6) gives a dual planar
quaternion

q = q1εi + q2εj + q3k + q4. (14)

3 Singularity Surfaces in C�+(P 2) of Single Stage Planar Plat-
forms

3.1 The Homogeneous Transformations

In the planar case, matrix T of the homogeneous transformation in (7) becomes the 3× 3 matrix in

X
Y
1


 =


cos(θ1) − sin(θ1) x1

sin(θ1) cos(θ1) y1

0 0 1





x
y
1


 (15)

where θ1 is the rotation of the moving frame about the z-axis of the fixed frame and (x1, y1) is the
translation vector of the origin of the moving frame with respect to the origin of the fixed frame.
The same homogeneous transformation matrix can be written using the quaternionic components
of q as1 

X
Y
1


 =


q2

4 − q2
3 −2q3q4 2(q1q4 − q2q3)

2q3q4 q2
4 − q2

3 2(q1q3 + q2q4)
0 0 1





x
y
1


 . (16)

3.2 The Constraint Manifold

A general RPR planar platform is shown in Fig. 2, where the xij ’s and yij ’s are treated as constants.
For any point (x1, y1, θ1) in the workspace that is not a singularity, unique inputs ρ0, ρ1, ρ2 can
be found which means that this manipulator can be controlled by powering up the three prismatic
joints. The triangles EFG and PQR connect the pivots in the F and M frames and represent rigid
bodies. The u0i position vectors given in the F coordinate frame and the u1i position vectors given
in the M coordinate frame are

u00 =
[
0
0

]
, u01 =

[
x01

0

]
, u02 =

[
x02

y02

]
,

u10 =
[
0
0

]
, u11 =

[
x11

0

]
, u12 =

[
x12

y12

]
.

(17)

Collins and McCarthy [2] defined the constraint manifold by first defining three distances, ρi,
i = 0, 1, 2, representing the lengths of the RPR chains as

〈(u0i − U1i), (u0i − U1i)〉 = (u0i − U1i) · (u0i − U1i) = ρ2
i , (18)

1The transformation matrix in (16) is a corrected version of the transformation matrix displayed in (10) from [2]
where the factor of 2 was omitted in the entries (1,3) and (2,3).
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Figure 2: General Planar Platform

where U1i is the position of the u1i joint in the F coordinate frame found using the transformation
matrix of (16). Therefore, for each i = 0, 1, 2,

x0i

y0i

1


 −


q2

4 − q2
3 −2q3q4 2(q1q4 − q2q3)

2q3q4 q2
4 − q2

3 2(q1q3 + q2q4)
0 0 1





x1i

y1i

1


 = u0i − U1i, (19)

and (18) gives the following quadratic equation in the components of q :

aiq
2
1 + biq

2
2 + ciq

2
3 + diq

2
4 + 2fiq2q3 + 2giq1q3 + 2hiq1q2 + 2liq1q4 + 2miq2q4 + 2niq3q4 =

1
4
ρ2

i , (20)

where2




ai

bi

ci

di

fi

gi

hi

li

mi

ni




=




1
1

1
4 (x1i + x0i)2 + 1

4 (y1i + y0i)2
1
4 (x1i − x0i)2 + 1

4 (y1i − y0i)2
1
2 (x1i + x0i)
− 1

2 (y1i + y0i)
0

1
2 (x1i − x0i)
1
2 (y1i − y0i)

1
2 (y1ix0i − x1iy0i)




. (21)

2There is a sign error in [2], equation (15), in the expression for gi.
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3.3 The Quaternionic Jacobian

A Jacobian was found in [2] by taking the time derivative of each of the three equations given by
(20) and the time derivative of the rigid body motion constraint

q2
3 + q2

4 = 1. (22)

The derivative of (20) can be expressed as3

2qTCiq̇ =
1
2
ρiρ̇i, i = 0, 1, 2, (23)

where Ci is given by

Ci =



ai hi gi li
hi bi fi mi

gi fi ci ni

li mi ni di


 . (24)

The time derivative of (22) can be expressed as

[0 0 q3 q4]q̇ = 0. (25)

Combining three equations (23) with (25), we get the following Jacobian:

Aq̇ −Bṙ = 0, (26)

where

A =




qT C0

qT C1

qT C2

0 0 q3 q4


 and B =




1
4ρ0 0 0 0
0 1

4ρ1 0 0
0 0 1

4ρ2 0
0 0 0 1


 . (27)

3.4 Singularity Sets of Planar Platforms

When matrix A is singular, a type II singularity occurs. Since A in (27) is square, it becomes singular
whenever

detA = 0. (28)

3.4.1 General Planar Platform

A general planar platform is shown in Fig. 2. Setting the determinant of A from (27) to zero yields

S : A1q
2
1q

2
3 + A2q

2
1q3q4 + A3q

2
2q

2
4 + A4q

2
2q3q4 + A5q1q

3
3 + A6q2q

3
4 + A7q1q2q

2
3

+ A8q1q2q
2
4 + A9q1q

2
3q4 + A10q1q3q

2
4 + A11q2q

2
3q4 + A12q2q3q

2
4 = 0, (29)

3The T in (23) denotes the matrix transpose.
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where A1 through A12 are given by


x11x02 − x01x12

−(x11y02 + x01y12)
−(x11x02 − x01x12)
−(x11y02 + x01y12)

− 1
2 (y12x02 − x12y02)(x01 + x11)

1
2 (y12x02 − x12y02)(x01 − x11)

x11y02 − x01y12

x11y02 − x01y12

x01x02(x12 − x11) + x11x12(x02 − x01) + x01y02y12 + x11y12y02

−x01y02(1
2x12 − x11) + x11y12(1

2x02 − x01) + 1
2x01x02y12 − 1

2x11x12y02

x01y02(1
2x12 − x11) + x11y12(1

2x02 − x01) − 1
2x01x02y12 − 1

2x11x12y02

x01x02(x12 − x11) − x11x12(x02 − x01) + x01y02y12 − x11y12y02




.

Collins and McCarthy [2] call S a singularity surface in q1, q2, q3, and q4 coordinates. In order to
visualize this surface in three dimensions, (29) can be divided by q4

4 , since q4 > 0 assuming that θ1

is limited to −π < θ1 < π. Substituting

x =
q1

q4
, y =

q2

q4
, z =

q3

q4
(30)

into (29) yields

A1x
2z2 + A2x

2z + A3y
2 + A4y

2z + A5xz
3 + A6y + A7xyz

2

+ A8xy + A9xz
2 + A10xz + A11yz

2 + A12yz = 0. (31)

For specific values of z, (31) gives a quadric curve in the x, y plane [2].

3.4.2 In-Line Planar Platforms

An in-line planar platform has the three pivots aligned for both the base and the top. Therefore the
dimensions y02 and y12 are zero. Then the A matrix of (27) becomes a block matrix4

A =
[
A1 | A2

]
. (32)

where

A1 =




q1 q2

q1 + 1
2 (x11 − x01)q4 q2 + 1

2 (x11 + x01)q3

q1 + 1
2 (x12 − x02)q4 q2 + 1

2 (x12 + x02)q3

0 0




4Equation (32) is a corrected version of Equation (36) in [2] where q2 should have been q4 in the (2,1) and (3,1)
matrix elements.
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and

A2 =




0 0
1
2 (x11 + x01)q2 + 1

4 (x11 + x01)2q3
1
2 (x11 − x01)q1 + 1

4 (x11 − x01)2q4

1
2 (x12 + x02)q2 + 1

4 (x12 + x02)2q3
1
2 (x12 − x02)q1 + 1

4 (x12 − x02)2q4

q3 q4


 .

The singularity set is then given by (28) as

S : AP (q2
1q

2
3 − q2

2q
2
4) + BT (q2q3q

2
4 + q1q

2
3q4) + CT (q2q3q

2
4 − q1q

2
3q4) = 0, (33)

where

AP = x02x11 − x01x12, BT = x01x02(x12 − x11), CT = −x11x12(x02 − x01). (34)

3.4.3 Singularity set of a general in-line planar platform

A general in-line platform with x11 = 1, x12 = 4, x01 = 3, and x02 = 5 was studied in [2] and [10].
Substituting these values and (30) in (33) gives equation

−7x2z2 + 53xz2 + 7y2 + 37yz = 0, (35)

determines two surfaces. To find equations of these surfaces, factor (35) by solving it as a quadratic
equation in y, which yields

y = − z

14
(37±

√
196x2 − 1484x+ 1369), (36)

and the surfaces are given by

(y +
z

14
(37−

√
β))(y +

z

14
(37 +

√
β)) = 0, (37)

where β = 196x2 − 1484x + 1369. The discriminant β is quadratic in x, and setting it equal to 0
yields two values for x : xa = 1.0752 and xb = 6.4962. It can be easily seen that the discriminant
β is negative when xa < x < xb, and it is positive when x < xa or x > xb. From (37) or (35) it
follows that if z were zero then it would not matter if the discriminant β were negative. When z is
zero, y = 0 is the only solution to (37), so the line y = 0, z = 0, that is the x axis, gives additional
singular configurations which should be included, even when the discriminant of (37) is less than
zero. Fig. 3 shows the entire type II singular configuration for the general in-line planar platform.

4 Singularity Surfaces in C�+(P 2) of Two Stacked Planar Plat-
form

The singular configurations in quaternion form for planar platforms were identified in Section 3. The
singular configurations for two stacked planar platforms must also include the singular configurations
of the separate platforms since, at these configurations, it is impossible to know the position of the
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Figure 3: General In-Line Planar Platform Singularity Surface

moving pivots. If these are the only singular configurations, then the singularity set for stacked
planar platforms is the union of the individual singularity sets. Two stacked planar platforms can
be viewed as two links of a serial link manipulator, which could have singular positions due to the
position of one link relative to the other. If there are additional singularities, then there should exist
a Jacobian matrix that identifies these singular configurations when it becomes singular.

Two stacked planar platforms could be constructed as in Fig. 1, where ρ0, ρ1, and ρ2 are treated
as the inputs of the manipulator. A hyper-redundant manipulator can then be built by stacking
many two-stacked manipulators together since the pivots at the top of the second platform align
with the pivots on the bottom of the first.

4.1 The Jacobian of Two Stacked General In-Line Planar Platforms

Considering ρ0, ρ1, and ρ2 in Fig. 1 as inputs, a 12 × 12 Jacobian matrix could be constructed as
before. Observe that if a planar platform is not at or near a singular configuration, then the output
is unique and any planar motion is possible. If both platforms in Fig. 1 are able to move in any
planar direction and their configurations are stable, then clearly the outputs θ1, x1, and y1 are stable
and the end effector can move in any direction in the plane. So the manipulator is not in a singular
configuration. Thus it has been shown that the distances ρ0, ρ1, and ρ2 (see Fig. 1) should not be
considered as inputs and the only inputs are the six ρijs (three from each platform). Furthermore,
there are no additional singular configurations for the two stacked platforms other than the union
of the individual singular configurations. The assumption of viewing the two stacked platform as
analogous to a two-link serial robot arm which would add singular configurations is not appropriate,
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since they are type I for the two-link planar case. The singular configurations studied here are of
type II (see Section 2).

Figure 4: Spherical Wrist

Three platforms can be joined at the sides to form a three-dimensional platform similar to a
Stewart platform. It may be possible, by stacking these platforms, to involve a type II singularity
when the individual platforms are free of singularities. A comparison can be made to the spherical
wrist, shown in Fig. 4. It is made up of three powered revolute joints. When θ5 is such that the axis
of the other two joints align, then there is an infinite number of solutions for θ4 and θ6 in the inverse
kinematics problem. Therefore this configuration is in a singularity. A similar situation occurs when
three of the three-dimensional platforms are stacked.

5 Conclusions and Recommendations

A study of the type II singular configurations of stacked planar platforms was completed. The sin-
gularity surface of the general in-line planar platform was corrected and significantly reduced, which
is important since it is an important type of planar platform to be linked together to form a hyper-
redundant manipulator and thus allows more freedom of movement. The singular configurations of
a stacked planar platform were found to be the union of those of the individual platforms.

There are several recommendations for further work. The three-dimensional platform, such as
a Stewart platform, possibly could be analyzed using dual quaternions. Also, the workspace of a
manipulator is as important as the singularity position surface. Finding the workspace in quaternion
form and subtracting the singular configurations from it would identify separate regions such that
the manipulator could not go from one to another without external help. Another area for further
work could be in finding a way to do all the computations algebraically in a program that could do
Clifford algebra, without the use of matrices.
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