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My Take: Proof Research at the Undergraduate Level--How it Has Evolved1 

Annie Selden, New Mexico State University2 

 

1. Early Days: The Beginnings of Mathematics Education Research on Proof at the 

Undergraduate Level 

Although there had been mathematics education research on proof more generally (e.g., Bell, 

1976; Fischbein, 1982), there was little mathematics education research on proof at the 

undergraduate level until about the mid-1980s. John and my first foray into such research began 

in the mid-70s when we were teaching at the University of the Bosphorus in Istanbul, Turkey, 

and submitted an article on logical reasoning errors that students made in an abstract algebra 

course taught Moore Method, published in a local journal (Selden & Selden, 1976). This article 

was later recast in terms of misconceptions research and presented at a Cornell University 

conference (Selden & Selden, 1987), and is sometimes cited today. At about the same time, 

unbeknownst to us, Ed Dubinsky was researching topics on undergraduates’ understandings of 

logic (Dubinsky, 1987, 1989; Dubinsky, et al., 1988). As far as I can tell, many of these early 

empirical publications were based on careful observations of teaching undergraduates. Research 

on, and interest in undergraduate students’ knowledge of, and use of, logic in proving has 

continued to the present time (e.g., Dawkins & Roh, 2022; Dawkins & Norton, 2022; Durand-

Guerrier, et al., 2012, Savic, 2012).  

At about the same time, Gila Hanna, whose mathematics education research has often focused on 

the more theoretical and philosophical aspects of proof and proving, made the now well-known 

and influential distinction between “proofs that only prove and proofs that explain” (Hanna, 

1989, 1990). Also, Michael de Villiers, whose mathematics education research has often focused 

on the teaching and learning of geometry, proposed five functions of proof which are still quoted 

today; namely, proof as means of: (1) verification/conviction; (2) explanation; (3) 

systematization; (4) discovery; and (5) communication (de Villiers, 1990). De Villiers stated that 

this analysis was based on epistemological considerations and personal testimonies of practicing 

mathematicians. Still, a reading of the article suggests it was also based on insightful 

observations of his teaching and reading of the available literature (e.g., Alibert, 1988; 

Freudenthal, 1973; Hanna, 1989; Lakatos, 1976; Wilder, 1944). 

 
1 This is a preprint of a chapter for a book, being edited by Keith Weber and Milos Savic, anticipated to be 
published Summer 2023, and tentatively titled, New Directions in  University Proving: Honoring the Legacy of John 
and Annie Selden. 
 
2Dr. Annie Selden is Professor Emerita, Tennessee Technological University. After retirement in 2003, she and her 
husband, Dr. John Selden, took up adjunct positions in the Department of Mathematical Sciences, New Mexico 
State University, where they directed four PhD students in research in undergraduate mathematics education, 
including Milos Savic.  
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Another early foray into mathematics education research at the undergraduate level came with 

the formation in 1985 of the Advanced Mathematical Thinking Working Group of the 

International Group for the Psychology of Mathematics Education (PME). The idea behind this 

Working Group was to focus on “advanced mathematical thinking”, in contrast to much of the 

prior work of PME, which had concentrated on “elementary mathematical thinking” (Harel, 

Selden, & Selden, 2006, p. 147). Because the members of this Working Group came from a 

variety of countries, for convenience, it was decided that the term “advanced mathematical 

thinking” would be used for education beyond the compulsory stage, which at that time often 

concluded at age 16 and certainly included mathematics education research at the undergraduate 

level. A major undertaking of this Working Group was the writing of a book on advanced 

mathematical thinking (Tall, 1991); relevant to early research on proof, there were book chapters 

specifically on proof (Hanna; Alibert & Thomas), on the role of definitions, including a short 

discussion of concept image and concept definition (Vinner), and on research in the teaching and 

learning of mathematics at an advanced level (Robert & Schwarenberger). Other researchers 

have since provided their own definitions/descriptions of advanced mathematical thinking (e.g., 

in a special issue of Mathematical Thinking and Learning edited by Selden & Selden, 2005). 

1.1 Experiencing Proof and Proving in the Classroom, the Method of Scientific Debate, and 

Structured Proofs 

While not about proof at the undergraduate level, Balacheff (1988), in an empirical study of 

French secondary pupils’ proving, categorized their arguments into four different types and 

argued that these represented four increasingly sophisticated levels of thinking: (1) naïve 

empiricism, in which an individual arrives at a conclusion on the validity of an assertion based 

on a small number of confirming cases; (2) crucial experiment, in which an individual considers 

the possibility of generalization by examining a case that is not very specific; (3) generic 

example; in which the proof rests upon properties which are a generalization of a class of 

examples; and (4) thought experiment, in which an individual can distance themselves from 

specific actions and make logical deductions based only on knowledge of the properties and 

relationships characteristic of the situation. These categorizations are sometimes still referred to 

today (e.g., Varghese, 2011).  

The work of Alibert and Thomas (1991) on the method of scientific debate in French university 

classrooms was an attempt to get undergraduates to understand proofs, because they had 

observed that the students had difficulty understanding proofs when they read through textbook 

proofs in their strict formal, linear order. They wanted to “enable students to see proof as a 

necessary part of the scientific process of advancing knowledge, rather than just a formal 

exercise to be done for the teacher,” (Alibert & Thomas, 1991, p. 224). They described three 

steps in generating a scientific debate: (1) The teacher initiates and organizes the production of 

scientific statements [conjectures] by the students. (2) The students then provide support for the 

conjecture, or not, by scientific argument, proof, refutation, or counter-example. (3) The 

statements that can be confirmed by a full demonstration become theorems accepted by the class. 

(Alibert & Thomas, 1991, p. 225). 
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Another attempt to get away from the strict linear order of presenting proofs to university 

mathematics students was a structural method suggested by Uri Leron (1983). He wrote  

The method, triggered by recent ideas from computer science, is intended to increase the 

comprehensibility of mathematical presentations while retaining their rigor. The basic 

idea underlying the structural method is to arrange the proof in levels, proceeding from 

the top down; the levels themselves consist of short autonomous "modules," each 

embodying one major idea of the proof. (Leron, 1983, p. 174).  

While this structural presentation method was long thought to be a plausible one, it was “put to 

the test” empirically much later in a qualitative study that presented structured proofs to 

university mathematics students to see how they “read and perceived this type of proof 

presentation. Although some students valued the summaries contained in structured proofs, many 

complained that structured proofs ‘jumped around’ and required them to scan different parts of 

the proof to coordinate information.” (Fuller, et al., 2014, p. 1).  

2. Into the 1990s--Further Developments in Mathematics Education Research on Proof 

at the Undergraduate Level 

The 1990s saw a gradual flowering of mathematics education research at the undergraduate 

level. While much of this research concentrated on the teaching/learning of individual subjects 

(e.g., calculus, see Selden, Mason, & Selden, 1989; linear algebra, see Dorier, 1998) or on 

mathematical concept acquisition more generally (e.g., functions, see Dubinsky & Harel, 1992), 

some of it was devoted to proof and proving at the undergraduate level.  

2.1 Undergraduate Students’ Difficulties in Constructing Proofs 

For example, John and I published research on undergraduate students’ understanding of, and 

ability to unpack, logical statements (Selden & Selden, 1995). That study focused on transition-

to-proof course students’ ability to unpack informally written mathematical statements into the 

language of predicate calculus. The general notion of unpacking “has been applied variously to 

symbols, graphs, and diagrams. For example, when a group is denoted by G, realizing that a 

more expansive notation is (G, +) and evoking the group axioms, is an unpacking of the symbol 

G.” (Selden & Selden, 1995, p. 128). For this research, the statement For a < b, there is a c so 

that f(c) = y whenever f(a) < y and y <f(b) could be correctly unpacked as ∀ a ∀ b ∀ f  ∀ y ∃ c [(a 

< b  ˄  f(a) ˂y  ˄ y ˂ f(b))→f(c)=y].  For such “informal calculus statements, just 8.5% of 

unpacking attempts were successful; for actual statements from calculus texts, this dropped to 

5%.” We inferred that “these students would be unable to reliably relate informally stated 

theorems with the top-level logical structure of their proofs and hence could not be expected to 

construct proofs or validate them, i.e., determine their correctness.” (Selden & Selden, 1995, p. 

123). 

 Like much of the research on proof and proving in this time period, our research focused on 

what undergraduate students couldn’t do (Selden & Selden, 1987, 1995). Perhaps the underlying 

motivation for doing such research was the idea that research should obtain some baseline 

information on what students were currently learning, and could do in the way of proving and 
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problem solving, with then current university teaching. For example, Robert Moore did his 

dissertation research at the University of Georgia on transition-to-proof course students’ 

understandings of formal proof. He found that “An inductive analysis of the data revealed three 

major sources of the students' difficulties: (a) concept understanding, (b) mathematical language 

and notation, and (c) getting started on a proof.” (Moore, 1994, p. 249). Somewhat later in the 

decade, Keith Weber conducted his dissertation study at Carnegie-Mellon University on 

undergraduate and doctoral abstract algebra students’ proving—he documented that the 

undergraduates in the study were unable to apply facts they knew to prove theorems on groups. 

He hypothesized that the undergraduates failed “to construct a proof because they could not use 

the syntactic knowledge that they had.” In contrast, the doctoral students “appeared to know the 

powerful proof techniques in abstract algebra, which theorems are most important, when 

particular facts and theorems are likely to be useful, and when one should or should not try and 

prove theorems using symbol manipulation.” (Weber, 2001, p. 101). 

2.2 Undergraduate Students’ Proof Schemes 

There was also work in the 1990s on undergraduate students’ ideas of proof and proving, which 

included work on how they construct proofs and what they see as constituting a proof. In 

particular, Harel & Sowder (1998) classified students’ proof schemes. By proving they meant 

“the process employed by an individual to remove or create doubts about the truth of an 

observation [conjecture].” They described the process of proving as consisting of two 

subprocesess. (1) “Ascertaining is the process employed by an individual to remove or create 

doubts about the truth of an observation [conjecture].” (2) “Persuading is the process an 

individual employs to remove others’ doubts about the truth of an observation [conjecture].” 

(Harel & Sowder, 1998, p. 241, italics in the original). They described, and gave examples of, 

three overarching proof scheme categories: (1) External conviction proof schemes--basically it’s 

a proof if someone knowledgeable or a textbook tells you it’s a proof; (2) Empirical proof 

schemes—checking enough cases to convince you that the conjecture is true; and (3) Analytical 

proof schemes—broken down further into Transformational proof schemes and Axiomatic proof 

schemes—basically proofs that would be acceptable to the mathematical community. The notion 

of proof schemes has been widely used to analyze what constitutes for proof students (e.g., 

Erikson & Lockwood, 2021; Housman & Porter, 2003).  

2.3 Establishment of RUME Organizations 

By 1998, there was enough research on the teaching and learning of university mathematics to 

convene an ICMI Study Conference in Singapore, with the actual book published a bit later 

(Holton, 2003). While there are book chapters on research into the teaching/learning of calculus 

and linear algebra, on the secondary-tertiary transition, on APOS (Action, Process, Object, 

Schema) theory, and 51 entries on proof in the index, no single chapter was devoted to proof at 

the undergraduate level, suggesting that the organizers did not yet see, or know about, significant 

research on proof and proving at the undergraduate level. 

However, in the USA, the beginnings of research in undergraduate mathematics education 

(RUME) were emerging, as indicated by the three conferences on RUME in 1996, ‘97, and ‘98, 
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organized by the RUMEC (Research in Undergraduate Mathematics Education Community) 

group under the leadership of Ed Dubinsky. This was followed in 2001 by the formation of the 

first Special Interest Group of the Mathematical Association of America on Research on 

Undergraduate Mathematics Education (SIGMAA on RUME). The SIGMAA on RUME 

continues the tradition of holding annual RUME Conferences, at which there are always 

presentations on proof, proving, or proof comprehension (e.g., Moore, Byrne, Hanusch, & 

Fukawa-Connelly, 2016).  

3. In the Early 2000s, Mathematics Education Research on Proof Started to Broaden 

to Consider Topics Such as Proof Validation, the Teaching of Proof, Affect During 

Proving, and Proof Comprehension 

3.1 Early Validation Studies 

Our early exploratory study of eight transition-to-proof course students’ ability to validate, that 

is, to determine the correctness of, proofs investigated how these students “read and reflected on 

four student-generated arguments purported to be proofs of a single [elementary number theory] 

theorem.” (Selden & Selden, 2003, p. 4). This was not our very first foray into validation--we 

had provided a sample, hypothetical proof validation of a calculus theorem in Appendix 1 of our 

“unpacking paper” (Selden & Selden, 1995, pp. 143-147). In this study of transition-to-proof 

course students’ ability to correctly validate other similar students’ proof attempts, we found it to 

be at chance level. Subsequently, a number of other mathematics education researchers took up 

proof validation studies. Building on this research, further studies examined how mathematicians 

validate proofs (Weber, 2008) and how mathematicians read proofs (Weber & Mejia-Ramos, 

2011). Even later, proof validation research was subsumed by some under the more general 

heading of proof comprehension research—how individuals read, comprehend, and learn from 

presented proofs. However, validating a proof attempt, either one’s own or another person’s, 

seems to require somewhat different skills than comprehending a presented proof, whether in a 

text or a lecture, although there is some overlap. (Selden & Selden, 2015, p. 343). 

3.2 Early Research on the Teaching of Proof at the Undergraduate Level  

How proof is actually taught at the undergraduate level, while not much researched up to this 

time, was investigated by Keith Weber (2004) in his study of the entirety of one professor’s 

introductory real analysis course. He identified three separate teaching styles that the professor 

used: (1) a logico-structural teaching style in the case of sets and functions; (2) a procedural 

teaching style in the case of limits of sequences; and (3) a semantic teaching style in the case of 

elementary topological concepts like interior point of a set. This study revealed, amongst other 

things, that the popular, stereotypical idea that the teaching of university advanced mathematics 

courses, such as real analysis, consisted “entirely of definition, theorem, proof, definition, 

theorem, proof, in solemn and unrelieved concatenation” (Davis & Hersh, 1981, p. 151) was too 

narrow and needed further investigation.  

Additional studies of actual university mathematics teaching were not taken up until after it was 

pointed out that the teaching of proof-based university mathematics courses was in need of 

investigation (Speer, Smith, & Horvath, 2010). A recent literature review of 104 published 
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papers reporting research on the teaching of proof-based mathematics courses at university 

considered both lecture-based and student-centered pedagogies. For each type of instruction, the 

authors described the instruction, instructor beliefs and rationales, and the relationship between 

instruction and students’ learning. (Melhuish, Fukawa-Connelly, Dawkins, Woods, & Weber, 

2022). The authors noted that often the studies were hard to compare due to the use of different 

theoretical frameworks. They also observed that there are still too few studies today that attempt 

to link instructors’ teaching of proof to university students’ learning of proof. 

3.3 The Beginnings of Incorporating Affect into Research on Undergraduates’ Proving 

In this decade, we began thinking about how affect, in particular consciousness and non-

emotional cognitive feelings, might be involved in the proving process (e.g., Selden, McKee, & 

Selden, 2008, 2010). Previously affect had often been viewed as separate from, but related to 

cognition; affect had also been divided into considerations of beliefs, attitudes, and emotions. 

These were described as being of increasing intensity and decreasing stability, with emotions the 

most intense (McLeod, 1989). At this time, we were not the only ones who were thinking, and 

writing about the role of affect and its relation to cognition; for example, DeBelllis and Goldin 

(2006) considered the relation of affect to mathematical problem solving, adding a fourth 

component, namely, values.  

3.3.1 Our Take on Affect in Proving 

In our paper, we focused on “a particular kind of affect – nonemotional cognitive feelings – and 

on the implementation of actions via behavioural schemas.” (Selden, McKee, & Selden, 2010, p. 

199). Some examples of such nonemotional cognitive feelings are “feelings of knowing, of 

caution, of familiarity, of confusion, of not knowing what to do next, of 

rightness/appropriateness, of rightness/direction or of rightness/summation.” (p. 202). Feelings 

can provide information, which can be positive or negative. Indeed “the feeling in constructing a 

proof that one is ‘on the right track’ is a cognitive feeling.” (p. 203). Such feelings can lead to 

actions via behavioural schemas, a notion for which we provided a six-point theoretical sketch:  

(1) Behavioural schemas are immediately available. They do not normally have to be 

searched for, which distinguishes them from most conceptual knowledge and episodic 

and declarative memory.  

(2) Simple behavioural schemas operate outside of consciousness. One is not aware of 

doing anything immediately prior to the resulting action – one just does it. They are not 

under conscious control.  

(3) Behavioural schemas tend to produce immediate action--one becomes conscious of 

the action as it occurs or immediately after it occurs  

(4) Behavioural schemas cannot ‘chained together’ – they function entirely outside of 

consciousness and one is consciousness of only the final action.  

(5) An action due to a behavioural schema depends on conscious input, at least in large 

part.  
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(6) Behavioural schemas are acquired through, possibly tacit, practice, that is, to acquire 

a beneficial schema a person should actually carry it a number of times – not just 

understand its appropriateness. Changing a detrimental behavioural schema requires 

similar, perhaps longer, practice. (This is a summary of Selden, McKee, & Selden, 2010, 

pp. 205-206). 

Following this description, we illustrated a number of actual examples of behavioural schemas 

that we had observed in undergraduate proving situations.  

While there has been much research on what one might call “hot” emotions, such as 

mathematical anxiety (e.g., Rozgonjuk, et al., 2020), there has been less research on more useful 

and calm emotions. One recent example of such research concerns undergraduate transition-to-

proof course students’ satisfying moments, including “understanding, overcoming challenges, 

and accomplishments without struggle”. (Satyam, 2020). However, in my view, there is a need 

for more research on the role of feelings, and affect more generally, in proving. 

Also, while there has been a great deal of international interest on affect in mathematics 

education research (e.g., see the ICME-13 monograph edited by Hannula, et al., 2019), most 

research deals with affect during problem solving, rather than proving, although constructing a 

proof can be seen as a kind of problem solving. 

3.4 Observing that Proof Comprehension is Under Researched 

At the 19th ICMI Study Conference on Proof and Proving in 2009, Juan Pablo Mejia-Ramos and 

Matthew Inglis presented the results of a bibliographic study of the “different argumentative 

activities associated with the notion of mathematical proof” that had been done up to that time. 

In their sample of 131 empirical research articles (pared down from an original 641), they found 

that of 

those articles in our sample that discussed specific tasks, the majority (82 papers) 

addressed students’ construction of novel arguments, some (24 papers) involved students’ 

reading of given arguments and none focused on the presentation of a given argument. In 

particular, only 3 articles addressed tasks related to the comprehension of a given 

argument and none of the articles discussed tasks directly focussed on the presentation of 

an argument to demonstrate students’ understanding of it. (Mejia-Ramos & Inglis, 2009, 

p. 91).  

This observation subsequently led to a burgeoning of research on proof comprehension in the 

next decade, beginning around 2010, much of it done by the Proof Comprehension Research 

Group at Rutgers University.  

3.5 An Assessment Model for Proof Comprehension Research  

Having established that proof comprehension was under researched (Mejia-Ramos & Inglis, 

2009), Juan Pablo Meija-Ramos and others embarked on proof comprehension research, 

beginning with the development of a multi-dimensional assessment model for proof 
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comprehension at the undergraduate level (Mejia-Ramos, Fuller, Weber, Rhoads, & Samkoff, 

2012). The authors contended that  

in undergraduate mathematics a proof is not only understood in terms of the meaning, 

logical status, and logical chaining of its statements but also in terms of the proof’s high-

level ideas, its main components or modules, the methods it employs, and how it relates 

to specific examples. (p. 1).  

The authors maintained that, to demonstrate comprehension of a proof, students ought to be able 

to understand the meaning of terms in the proof by being able to:  

(1) State the definitions of terms used in the proof in their own words. (2) Identify trivial 

implications of a given statement. (3) Identify examples that illustrate a given term in the 

proof. (4) Restate a given statement in a different, but equivalent, manner.  

Also, students should be able to understand the logical structure and proof framework by being 

able to:  

(5) Identify the type of proof framework (e.g., contradiction, contraposition). (6). Identify 

the purpose of a sentence within the proof framework.  

In addition, students should be able to justify claims in the proof by being able to:  

(7) Make explicit an implicit warrant in the proof. (8) Identify specific data supporting a 

given claim. (9) Identify the specific claims that are supported by a given statement by 

answering questions such as: Which claims in the proof logically depend on a given line 

of the proof?  

Furthermore, students should understand the overall structure of the proof by being able to: 

 (10) Provide a good summary of the proof. (11) Identify a good summary of a key sub-

proof.  

Moreover, students should be able to identify the modular structure of the proof, by being able 

to:  

(12). Partition the proof into modules. (13). Identify the purpose of a module in the proof. 

(14). Identify the logical relation between modules of the proof.  

Finally, students should be able to transfer the general ideas or methods of the proof to another 

context, by being able to:  

(15) Identify the method of proof. (16) Transfer the method of proof to a different task. 

(17) Appreciate the scope of the method. (This is a summary and renumbering of Mejia-

Ramos, Fuller, Weber, Rhoads, & Samkoff, 2012, pp. 5-19).  

How the above seventeen abilities might be demonstrated by an individual is illustrated via an 

analysis of the proof of the number theory theorem: There exist infinitely many triadic primes. 

One can wonder whether very many undergraduate, or even beginning graduate, students could 

demonstrate all these abilities, even when specifically asked to. However, more recently, there 
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has been work on the development and validation of proof comprehension tests (e.g., Mejia-

Ramos, Lew, de la Torre, & Weber, 2017). 

3.6 Some Theoretical Ideas Considered in the First Decade of the 2000s: Semantic and 

Syntactic Proof Productions, Key Ideas of a Proof, Cognitive Unity, Toulmin’s Scheme 

Several distinctions regarding students’ proving were made in this decade (2000-2010). For 

example, Weber and Alcock (2004) distinguished  

two ways an individual can construct a formal proof. We define a syntactic proof 

production to occur when the prover draws inferences by manipulating symbolic 

formulae in a logically permissible way. We define a semantic proof production to occur 

when the prover uses instantiations of mathematical concepts to guide the formal 

inferences that he or she draws. (p. 239). 

They presented exploratory case studies from undergraduate group theory and real analysis proof 

attempts. While the idea of contrasting semantic and syntactic proof productions was taken up 

again (Mejia-Ramos, Weber, & Fuller, 2015), this binary distinction between syntactic and 

semantic proof productions seems too stark; proving is more likely to be a combination of the 

two ways of arguing/reasoning. In a recent article, Weber (2021) considered the role of syntactic 

representations in set theory, where this distinction seems more applicable.  

Another binary distinction was put forward by Manya Raman (2003) who introduced the notion 

of key idea(s) of a proof. She developed a framework “for characterizing people's views of proof, 

based on a [binary] distinction between public and private aspects of proof and the key ideas 

which link these two domains.” (Raman, 2003, p. 319). Since being introduced, the notion of key 

ideas has sometimes been considered further (e.g., Yan & Hanna, 2019). Also, around this time, 

another binary distinction was introduced by Paolo Boero and colleagues (1996) -- the idea of 

the cognitive unity between the processes of conjecturing and proving, although it can be 

difficult to observe and analyze the continuity of these two processes. (Pedemonte, 2007, p. 25), 

and again this binary distinction is too stark. 

For a while, there was some interest in using Toulmin’s (1958) argumentation scheme, 

developed to analyze philosophical and legal arguments, to analyze proofs and proving. 

However, the concepts of claim, data, warrant, backing, and especially the concepts of modality 

and rebuttal, seem more suited to analyzing classroom argumentation and conjecturing (e.g., 

Fukawa-Connelly, 2014), than to proof construction. 

4. Research on Proof at the Undergraduate Level Expands in a Variety of Directions 

After About 2010 to the Presenti 

The number of researchers investigating proof at the undergraduate level and the variety of 

topics investigated now expanded, one might say almost exploded, in a multitude of directions: 

further research on proof construction, validation, and comprehension; on the university teaching 

of proof and proving and proof-based courses; on mathematicians’ reading, sometimes 

skimming, of proofs; on expert/novice studies of proof comprehension, including eye-tracking 

studies; on investigation of what university students learn from lecture and inquiry-based 
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courses; and on mathematicians’ and university students’ knowledge of, and valuing of, the 

genre of proof, to name but a few.  

4.1 Studies of Mathematicians’ Teaching of Proof and Proving: Their Views of Successful 

Students’ Thinking, Their Classroom Teaching, How They Grade, IBL teaching 

Mathematicians have views, sometimes strong ones, on how to teach proof-based courses. One 

can wonder: Where did they get their views on the teaching of proof/proving? Probably from 

their own experiences, taking undergraduate and graduate proof-based mathematics courses. 

Almost surely, most have not read the mathematics education research literature, such as it is, 

regarding what is now known about effective, and ineffective, university mathematics teaching, 

although more recently some information from the research literature has appeared in 

publications that mathematicians read, such as the Notices of the AMS (e.g., Alcock, Hobbs, Roy, 

& Inglis, 2015). 

4.1.1 Mathematicians’ views of successful provers and studies of how mathematicians teach 

In an exploratory interview study of five mathematicians’ views on their teaching of a course 

meant to introduce students to mathematical reasoning and proof, Lara Alcock (2010) identified 

“four modes of thinking that these professors indicated are used by successful [university 

student] provers.” (p. 73). These are: (1) instantiation, meaning understanding a mathematical 

statement by thinking about particular or generic objects to which it applies; (2) structural 

thinking, meaning generating a proof for a statement by using its formal structure, that is, making 

formal deductions based on the statement and/or associated definitions and known results; (3) 

creative thinking, meaning examining instantiations of mathematical objects in order to identify 

a property or set of manipulations that can form the crux of a proof; and (4) critical thinking, 

meaning checking the correctness of assertions by looking for counterexamples and properties 

that are implied or should be preserved. 

In a study based on observations of one abstract algebra instructor’s lecture-based teaching, Tim 

Fukawa-Connelly (2012) documented that “she [the instructor] frequently modeled the aspects of 

hierarchical structure and formal–rhetorical skills, and structural, critical, and instantiation 

modes of thought” (p. 325). She also attempted to involve students by asking questions, but most 

required only a factual response. The instructor was attempting to model the way an expert in the 

discipline thinks.  

A separate, later video case study of proofs presented in one real analysis professor’s (Dr. A’s) 

lectures, investigated why students did not understand what the professor wanted to convey. Dr. 

A was justifying the claim: If a sequence {xn} has the property that there exists a constant r with 

0 < r < 1 such that |xn – xn-1| < rn for any two consecutive terms in the sequence, then {xn} is 

convergent. Dr. A was interviewed as to what he intended to convey and six students were also 

asked to describe what were the main ideas of the proof while looking at their notes and twice at 

a video of the classroom proof. Dr. A noted that he had five ideas about Cauchy sequences that 

he wished to convey, four of which were useful methodological ideas, that he had described 

informally by using words like small, but did not write on the blackboard. It turned out that the 

students “did not grasp many of the ideas that Dr. A emphasized as the most important parts of 
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the lecture, even after viewing the videos of the lecture for a second time.” (Lew, Fukawa-

Connelly, Mejia-Ramos, & Weber, 2016, p. 185). 

One wonders how best to advise students that it might be better not to copy the proof verbatim 

from the blackboard, but rather to take notes on what the professor says about the proof and its 

importance. Perhaps one way might be for instructors to use Dr. T’s idea of handing out a hard 

copy of the complete proof prior to presenting/discussing a proof, so students could concentrate 

on more informal explanations and diagrams (Weber, 2001, p. 127), but this would need to be 

tested. 

4.1.2 Pedagogical proofs and why some proofs seem hard for students 

Mathematicians’ views of what they consider to be good pedagogical proofs has been 

investigated. In a qualitative study of how eight mathematicians revised two analysis proofs for 

presentation to mathematics majors, Lai, Weber, and Mejia-Ramos (2012) found that the 

mathematicians thought “that introductory and concluding sentences should be included in the 

proofs, main ideas should be formatted to emphasize their importance, and extraneous or 

redundant information should be removed to avoid distracting or confusing the reader.” In a 

second larger quantitative study (N=110) to assess whether other university mathematics 

instructors agreed with the eight mathematicians of the first study, it was found that there was “a 

high degree of agreement among mathematicians regarding how they would revise proofs for 

pedagogical purposes.” (p. 146). 

While it is known that some types of proofs seem harder to construct or comprehend (e.g., 

contradiction proofs, mathematical induction proofs, recipe proofs), is there some way, other 

than using the logical order of course topics, to design the teaching of proof, for example, in a 

transition-to-proof course? There were earlier studies of students’ difficulties with proof by 

contradiction (e.g., Antonini & Mariotti, 2006). More recently Rabin & Quarfoot (2021) reported 

that, for their transition-to-proof course participants, “the knowledge resources students bring to 

bear on proof problems, and how these resources are activated, explain more of their 

‘difficulties’ than does the logical structure of the proof technique.”  

4.1.2.1 Proofs by Mathematical Induction 

Mathematical induction proofs have long been considered difficult for students to understand and 

construct. When Gila Hanna (1990) introduced the notion of “proofs that explain versus proofs 

that only prove”, she used the fact that the sum of the first n integers is n(n+1)/2, when proved 

formally by the Principle of Mathematical Induction (PMI), as a “proof that only proves”.  

To help students with PMI, Harel (2002) reported on a “fundamentally different instructional 

treatment of mathematical induction”, in which prospective secondary teachers’ conception of 

mathematical induction developed as a transformational proof scheme. The treatment was guided 

by a system of learning-teaching principles, called the DNR system, which is an acronym for the 

principles of Duality, Necessity, and Repeated Reasoning, developed previously by Harel 

(1998). The Duality Principle makes the distinction between ways of thinking and ways of 

understanding, which are somewhat different from what one might suppose (see the editors’ 
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comments on Harel, 2008). The Necessity Principle states that students are likely to learn if they 

see a need for what we teach them, by which Harel meant an intellectual need as opposed to a 

social or economic need. The Repeated Reasoning Principle states that students must practice 

reasoning in order to internalize and interiorized specific ways of thinking and ways of 

understanding. 

More recently Relaford-Doyle and Núñez (2021), “used a ‘visual proof by induction’ – a simple 

image that is designed to demonstrate a theorem that would be formally proven using 

mathematical induction – to investigate students’ conceptualizations of mathematical induction.” 

They found that 

First, the majority of students who were familiar with formal mathematical induction had 

difficulty using the image to justify the theorem, suggesting that their knowledge of the 

proof method was intimately linked to the algebraic method and thus largely procedural 

in nature. Second, students who had not studied formal mathematical induction generally 

used the image as the basis of a standard inductive generalization and did not recognize 

that the image could be used to establish the necessity of the theorem. Surprisingly, these 

students often expressed conceptualizations of natural number that were inconsistent with 

the formal characterization that forms the basis of formal mathematical induction. 

(Relaford-Doyle & Núñez, 2021, p. 1).  

4.1.3 Mathematicians’ grading of student proof submissions 

Students not only learn proving from their classroom experiences, whether lecture or inquiry-

based, they learn from how their proofs are scored, and especially, from their instructors’ 

comments, provided they read them. Moore (2016) conducted an exploratory study of four 

mathematicians’ evaluation and scoring of six undergraduate student proofs in a discrete 

mathematics or geometry course and asked them questions about the characteristics of a well-

written proof and how they communicated these to students. They agreed the 

most important characteristics of a well-written proof are logical correctness, clarity, 

fluency, and demonstration of understanding … [and although] the professors differed in 

the attention they gave to fluency issues, such as mathematical notation, layout, grammar, 

and punctuation, they agreed in giving these characteristics little weight in the overall 

score. (p. 246). 

In a similar study, nine mathematicians were interviewed as they “assigned points to three 

student-generated [number theory] proofs from a transition-to-proof course.” Curiously, there 

were 

ten instances in which a mathematician did not assign full credit to a proof that they 

evaluated as correct [primarily due to minor omissions] … [and similar to Moore (2016)] 

mathematicians assigned points based not primarily on the correctness of the written 

artifact that they were given, but rather based on their models of students’ 

understanding.” (Miller, Engelke, & Weber, 2018).  

https://link.springer.com/article/10.1007/s40753-020-00119-4#auth-Rafael-N__ez
https://link.springer.com/article/10.1007/s40753-020-00119-4#auth-Rafael-N__ez
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One can wonder what messages students are getting about the genre of proof—what’s important 

to include, how much explanation/justification is needed, and so forth.  

4.1.4 Research on IBL teaching 

The phrase, Inquiry Based Learning (IBL), has been used in the mathematics community since 

the 1990s by those, mainly US, mathematicians attracted by aspects of the Moore Method (cf., 

Coppin, et al., 2009). More recently, the mathematics education research community has taken 

an interest in understanding the methods of, and potential of, IBL teaching (e.g., Haberle, et al., 

2018).  

[W]hile it did not originate from educational research, its practices are generally well 

aligned with research and there are good pedagogical foundations for an inquiry-based 

approach to learning. What makes it special is its development as a social phenomenon, 

bringing together those who have discovered the power of student-centered and active 

learning approaches to undergraduate mathematics instruction. It now embraces a “big 

tent” that is characterized by a willingness to cede large chunks of time from lecture so 

that students have structured opportunities within class to explore concepts, investigate 

key ideas, and build understanding through inquiry. (Bressoud, 2019). 

IBL has similarities with Inquiry-Oriented Instruction (IOI), which was developed within the 

mathematics education research community, while IBL did not.  

While IBL has become a social movement for a wide variety of practitioners of student-

centered learning, IOI is strongly rooted in the discipline of research in mathematics 

education, drawing directly on educational theory to explore student thinking and build 

activities that seek to address common difficulties. (Bressoud, 2019). 

In my view, IBL is more often focused on developing university students’ proving skillsii, 

whereas IOI is often more concentrated on having students develop mathematical concepts in 

such topics as beginning differential equations (e.g., Rasmussen & Kwon, 2007), linear algebra, 

and group theory. (cf., Johnson, et al., 2013). 

4.2 Research on Mathematicians: Experts’ Versus Novices’ Reading of Proofs; Eye-

Tracking Studies, Proof Summaries, Explanatory Value of Proofs, Use of Examples in 

Proving, Genre of Proof 

Researchers have investigated what mathematicians do when they read and construct proofs. 

This seems to parallel, but probably was not influenced by, psychological research on expert 

versus novice behavior (e.g., Schunn & Nelson, 2009). The experts in the mathematics education 

research studies are mathematicians whose behavior and views, with regard to proof and 

proving, are investigated.  

4.2.1 Experts’ versus novices’ reading of proofs 

A more recently used methodology to gain information on mathematicians’ and students’ reading 

of proofs is eye-tracking, which allows researchers to investigate what individuals focus on and 

how they traverse the written text. Inglis and Alcock (2012) in such an eye-tracking study, found  
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compared with mathematicians, undergraduate students spend proportionately more time 

focusing on “surface features” of arguments, suggesting that they attend less to logical 

structure; and … compared with undergraduates, mathematicians are more inclined to 

shift their attention back and forth between consecutive lines of purported proofs, 

suggesting that they devote more effort to inferring implicit warrants. (Inglis & Alcock, 

2012, p. 358). 

Other researchers have taken up similar eye-tracking studies. For example, in one rather 

specialized study of eight mathematicians’ reading of proofs having accompanying pictures, it 

was found that all paid attention to the pictures, but “in two out of three items, the text was 

fixated upon significantly longer than the picture. The data suggest that the participants tried to 

integrate information from text and picture by alternating between these representations.” 

(Beitlich, et al., 2014). 

4.3.2 Proof summaries 

Because writing good proof summaries is one indication of proof comprehension [see (9) in 

Section 3.5 above], a recent study investigated features of students’ proof summaries that were 

most valued by expert judges [mathematicians]. In that study, students were first provided “with 

a proof that the open unit interval is uncountable, and asked for a 40-word summary.” 

Subsequently, mathematicians were asked to make comparative judgmentsiii. It was “found that 

high-scoring summaries referenced a proof’s logical structure and the mechanism by which it 

reached a contradiction.” (Davies, et al., 2020, p. 181). Perhaps it would also be good to 

investigate how university students might be taught to write good proof summaries. On the web, 

one can find tips for writing good summaries of more general text, but it is not clear these would 

apply to proof summaries. 

4.3.3 Explanatory value of proofs  

In the more philosophical literature, “proofs that explain” have often been valued over “proofs 

that only prove”, with visual proofs considered to be explanatory. However a recent empirical 

study of mathematicians’ views found that “in contrast to claims made in the literature regarding 

the explanatory value of different types of proofs, mathematicians in our study did not seem to 

judge visual proofs as particularly explanatory” (Mejia-Ramos, Evans, Rittberg, & Inglis, 2021).  

As to mathematicians’ notion of explanatoriness, and its relationship to prior accounts of 

mathematical explanation (e.g., Hanna & Jahnke, 1996), the authors further stated that   

Using a Comparative Judgement approach, we asked 38 mathematicians to assess the 

explanatory value of several proofs of the same proposition. We found an extremely high 

level of agreement among mathematicians, and some inconsistencies between their 

assessments and claims in the literature regarding the explanatoriness of certain types of 

proofs. (Mejia-Ramos, Evans, Rittberg, & Inglis, 2021, p. 575).  

4.3.4 Use of examples in proving  

An early discussion of generic examples was given by Mason and Pimm (1984), who observed 

that “A generic example is … presented in such a way as to bring out its intended role as the 
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carrier of the general. This is done by stressing and ignoring various key features.” (p. 287). 

Somewhat later Balacheff (1988; see Section 1.1) observed students using generic examples in 

proving.  

Generic proofs are based on generic examples and have been used in university mathematics 

teaching. Rowland (2002) gives a number of nice examples of generic proofs that he uses in 

undergraduate number theory and suggests principles for how to select them. These include: (1) 

The particular case should be neither too trivial nor too complicated. (2) In number theory, where 

the proofs are often about primes, one should pick a number like 17 that one can easily follow 

through in a generic proof. (Rowland, 2002, pp.167-168). 

More recently, a study of successful mathematicians’ and students’ use of examples, in exploring 

and proving conjectures, observed how participants selected and used them (Ellis, et al., 2013). 

Reasons for example choice were to: (1) Test boundaries of a hypothesis; (2) Examine relevant 

properties to the conjecture; and (3) Build a progression of specific examples. Participants used 

examples to: (1) Attend to common features across multiple examples; (2) Identify the structure 

of a general argument; and (3) Envision an example as a changing representation. (This is a 

summary of Table 2; Ellis, et al., 2013, p. 268).  

4.3.5 Genre of proof  

We discussed, and gave some examples of, the genre of proof in a paper presented at the Ben 

Gurion University Symposium in honor of Ted Eisenburg’s retirement (Selden & Selden, 2013). 

Despite initial objections of the organizers regarding our use of the phrase “genre of proof”, it 

has since been taken up by others (e.g., Bowers & Küchle, 2020). Also, unbeknownst to us, there 

had been an earlier mathematics education dissertation study of mathematical word problems as 

a genre (Gerofsky, 1999). 

The linguistic conventions of mathematical proof can be considered a part of the genre of proof. 

In one study, it was found that university “students were either unaware of these conventions or 

unaware that these conventions applied to proof writing” and that “students did not fully 

understand the nuances involved in how mathematicians introduce objects in proofs” (Lew & 

Mejia-Ramos, 2019, p. 121). For example, mathematicians objected to “None of the sets are ∅”, 

but students did not. 

In their theoretical study, Dawkins and Weber (2017) considered values and norms of written 

proofs, many of which can be considered as a part of the genre of proof. Examples of norms 

were: (1) Justification in a proof should be deductive and not admit rebuttals. (2) Mathematical 

knowledge and justification should be independent of (nonmathematical) contexts, including 

time and author. (3) Proof is an autonomous object and not a description of the actual problem 

solving involved.  

4.3.6 Questioning whether what mathematicians do should influence educational practices 

Presumably, the main reason for investigating mathematicians’ practices with respect to proof 

and proving is to inform the design of instruction. One thoughtful paper has analyzed whether 

this is wise. Using examples from the literature, the authors found “every research methodology 
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for investigating mathematical practice is fundamentally limited and we require triangulation 

from multiple methods and theoretical lenses to fully understand mathematical practice.” And 

“we highlight reasons for why mathematical practice sometimes should not inform mathematics 

instruction.” (Weber, Dawkins, & Mejia-Ramos, 2020. p. 1063).  

In general, trying to infer how to help novices become experts, from the study of experts’ 

behavior, is fraught with difficulties. One can investigate novices’ behaviors and difficulties –

that’s the beginning point. One can also investigate experts’ behaviors--that’s the theoretical 

endpoint, but how to get from one to the other is not easy. The general expert-novice literature 

often boils the problem down to observing that “It takes ten years, or 10,000 hours, to make an 

expert [in almost anything].” (Kendra, 2022). Mathematics education researchers are beginning 

to devise ways--strategies and tools--for helping university mathematics students with proving 

and proof comprehension, thereby making the acquisition of these important skills somewhat 

easier; but it seems that such learning also requires motivation and persistence. As Euclid 

reportedly replied to King Ptolemy, “There is no royal road to geometry.” 

4.4 Attempts to Help University Mathematics Students Learn How to Read and Write 

Proofs – Some Successes, Some Failures: Revising Proof Attempts, E-Proofs, Self-

Explanation Training, Proof Frameworks 

Mathematics education researchers have considered university students’ difficulties with proofs 

and proving and how to help them learn to comprehend and construct proofs. They have 

considered several approaches and investigated their usefulness. 

4.4.1 Revising/Rewriting proofs 

Mathematics instructors commonly write comments on university students’ submitted proofs, but 

what do students do with that feedback? One exploratory interview study (Moore, Byrne, 

Hanusch, & Fukawa-Connelly, 2016) asked eight undergraduate students, who had taken at least 

two proof-based university mathematics courses, to describe and interpret a professor’s feedback 

on scored proofs taken from a previous study by Moore (2016). The authors found that the 

students tended to interpret, or misinterpret, the professor’s feedback in the following ways: 

(1) When the professor wrote comments on a proof, the participants correctly identified the 

changes, and generally, but not always, could provide some rationale for those changes. 

(2) When the professor’s comment was a clarification request and did not provide new text, 

the participants struggled to provide a rationale for the change. 

(3) When they revised the proofs, the participants mostly successfully implemented the 

suggested changes, even when they did not fully understand the rationale for the changes. 

(This is a summary of the authors’ findings, Moore, Byrne, Hanusch, & Fukawa-

Connelly, 2016, pp. 321-322). 

One can ask whether undergraduate students would have more success interpreting feedback if 

they were asked to revise their proofs and resubmit them for additional credit. While I did not 

find research on this, my experience working closely with an undergraduate real analysis 
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instructor was that students’ subsequent rewritten proofs were always deemed improved by the 

instructor, whether or not the students correctly interpreted the feedback. 

4.4.2 Students’ difficulty translating informal ideas into acceptable proofs 

Students sometimes have informal ideas and arguments, yet have difficulty transforming these 

arguments into proofs acceptable to the mathematical community. As pointed out by Mamona-

Downs and Downs (2009), “A particularly frustrating circumstance for a student is when he/she 

can 'see' a reason why a mathematical proposition is true, but lacks the means to express it as an 

explicit argument in one form or another.” In their CERME-6 Working Group paper, they give 

three examples illustrating how students might accomplish this. 

In another study, the researchers explored what it means for undergraduate to base a proof on an 

informal argument. They found that students pay “attention to only a small cross section of what 

can be carried forward from an informal argument toward the goal of creating a proof” and that 

“can account for some student difficulties with, and avoidance of, using their own informal 

arguments as a basis for proof construction.” (Zazkis & Villanueva, 2016, p. 318). 

4.4.3 e-proofs: A valiant attempt to get students to understand the structure of proofs 

Even though mathematics instructors explain proofs in advanced mathematics lecture classes, 

students do not always know what to pay attention to or what to write in their notes (for more 

information, see Fukawa-Connelly, Weber, & Mejia-Ramos, 2017). Thus, most of the work of 

proof comprehension is done outside of class, and students’ own notes are often not very helpful. 

This may be because, often to understand a proof and infer a warrant, one may need to consider 

the logical relation between two distinct lines in different parts of a proof. To help with this, a 

potential technological solution was devised: e-Proofs. These were designed to make the 

structure and reasoning in a proof more explicit by “graying out” less relevant parts of the proof, 

in order to make the structure and reasoning more explicit (Alcock & Wilkinson, 2011). 

Unfortunately, when tested, it was revealed “that students who studied an e-Proof did not learn 

more than students who had simply studied a printed proof and in fact retained their knowledge 

less well.” This led to the conclusion that “e-Proofs made learning feel easier, but as a 

consequence resulted in shallower engagement and therefore poorer learning.” (Alcock, Hodds, 

Roy, & Inglis, 2025, p. 742). The authors go on to caution that   

good pedagogical intentions do not always translate into effective interventions. It does 

not mean that resources like e-Proofs are never valuable—it could be, for example, that 

they are not good for first-time learners but are valuable resources for students who have 

already studied a proof independently and would benefit from clarification on aspects that 

they have found confusing or difficult. (Alcock, Hodds, Roy, & Inglis, 2025, p. 744). 

4.4.4 Self-explanation training on how to read proofs 

After considering the implications of their eye-tracking study of experts’ versus novices’ reading 

of proofs and noting how experts moved back and forth when reading proofs for understanding 

(see Section 4.3.1 and Inglis & Alcock, 2012), Alcock and collaborating researchers at 
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Loughborough University decided to try self-explanation training applied to mathematical proof 

comprehension. This is a technique that had already been tried previously with Newtonian 

mechanics. The materials they developed, which consisted of slides and a booklet, instructed 

students to identify key ideas in each line of a proof and to explain each line in terms of other 

ideas in the proof and their own knowledge. It was found that, in contrast to a control group who 

studied history of mathematics materials, students who engaged with the self-explanation 

training materials were better at inferring warrants, at relating different lines of a proof, and were 

more goal driven (Alcock, Hodds, Roy, & Inglis, 2015). 

4.4.5 Proof frameworks  

One can think of proof frameworks as an attempt to help beginning university mathematics 

students with producing proofs. We first discussed the notion of proof frameworks in our 

“unpacking paper”. At the time, we wrote 

By a proof framework we mean a representation of the "top-level" logical structure of a 

proof, which does not depend on detailed knowledge of the relevant mathematical 

concepts, but which is rich enough to allow the reconstruction of the statement being 

proved or one equivalent to it. A written representation of a proof framework might be a 

sequence of statements, interspersed with blank spaces, with the potential for being 

expanded into a proof by additional argument. (Selden & Selden, 1995, p. 129). 

Since then, we have written more extensively on proof frameworks (Selden, Selden, & 

Benkhalti, 2017), and others have researched similar tools such as proof templates (Klanderman 

& Satyam, 2022). However, more research needs to be done on the effectiveness of these tools. 

5. Summing up and Looking to the Futureiv 

From the above, one can see that there is a rich mathematics education research literature on 

mathematicians’ and university students’ proof validation, proof constructionv, proof 

comprehension, proof evaluation, use of examples, and so forth, that continues to expand in a 

variety of new directions. I feel that part of the reason for this explosion of research has been the 

increasing development of new PhD programs focusing on RUME in US university mathematics 

departments (e.g., San Diego State University/ University of California at San Diego, established 

in 1993; Arizona State University established in 1997; Portland State University established in 

1997; Texas State University established in 2007). Another reason for this explosion may be the 

introduction of new research methodologies beyond the more traditional observation, interview, 

and questionnaire studies to include comparative judgment studies (e.g., Davies, et al., 2020); 

eye-tracking studies (e.g., Inglis & Alcock, 2012); and internet surveys, particularly of 

mathematicians (e.g., Inglis, et al., 2013). An additional reason for this explosion of research on 

proof at the undergraduate level may be the creation in 2015 in Europe of INDRUM 

(International Network for Didactic Research on University Mathematics)vi, which hosts biennial 

conferences on research in the didactics of mathematics at tertiary level and has a Working 

Group on Logic Reasoning and Proof. 
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Some promising areas for future research deal with proof assistants, and other technology, in 

proof and its teaching (e.g., Hanna, Reid, & de Villiers, 2019); and in research on embodied 

cognition, especially gestures, in proving (e.g., Kokushkin, 2022). Proof assistants can alleviate 

the burden of checking one’s logic. Gestures can carry some of the burden of individual working 

memory. In addition, “Learners use collaborative gestures to extend mathematical ideas over 

multiple bodies as they explore, refine, and extend each other’s mathematical reasoning.” 

(Walkington, et al., 2019).  

Furthermore, Alibali, Nathan, and colleagues have some intriguing results on simple proofs, 

done with psychology undergraduates, that indicate that gestures and speech complement one 

another in certain proving tasks; and that one can even predict from gestures, if they are in synch 

with utterances, the validity of a proof attempt. (e.g., Pier, et al., 2014). More indications for the 

value of studying gestures during proving comes from the research of Hortensia Soto and 

Michael Oehrtman (2022), who have examined the role of gestures in complex variables learning 

and proving. In particular, they have considered the gesture, known as an amplitwist for complex 

multiplication as a rotation and dilation, in students’ and mathematicians’ understanding of 

complex differentiation and contour integration. No doubt, other very interesting, as yet 

unforeseen, directions in research on undergraduates’ and mathematicians’ proof and proving 

will develop as time marches on.  
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