Getting Faculty Involved in Assessing and Improving Students’ Critical Thinking

Barry Stein, Professor, Co-Director
Center for Assessment and Improvement of Learning
Tennessee Tech University

Ada Haynes, Professor, Co-Director

Gregory Light, Director
Searle Center for Teaching Excellence
Northwestern University

Denise Drane, Associate Director

Higher Learning Commission, 2013

Partial support for this work was provided by the National Science Foundation’s TUES Program under grants 1022789 and 942404.

© Tennessee Tech University 2013
Importance of Critical Thinking

Explosion of Information

Internet

E=MC^2
Email
MySpace
Wikipedia
Facebook
Phone Apps
Augmented Reality

Internet

Books

Magazines
Television
Radio

Journals
YouTube
MOOCs
Blogs

Email

Facebook

MySpace

Wikipedia

Phone Apps

Augmented Reality

Books
The Changing Nature of Education

Remembering Information

Finding Relevant Information
Understanding & Evaluating Information
Using Information Effectively
What is Critical Thinking?

Classic Emphasis

Evaluate Arguments and Conclusions

Reasoning
What is Critical Thinking?

Classical Emphasis
Evaluate Arguments and Conclusions
- Reasoning

Expanded Contemporary Emphasis
Evaluate Ideas and Plans
- Problem Solving
- Communication
- Creativity
Evaluate One’s Own Understanding
- Life-Long Learning Skills

Expanded Contemporary Emphasis
Classical Emphasis
Why Assess Critical Thinking?

Need to Measure Success for Accountability

Assessment Drives Improvement Efforts

How We Assess - Determines What Students Learn
History of CAT Development

Preliminary Work At TTU 2000 - 2004

Collaborate With Other Institutions To Refine CAT 2004 - 2007

Develop Training Methods for National Dissemination & Collect Norms 2007 - 2010

Expand National Dissemination & Support Assessment in NSF Projects 2010 - 2014
Over 150 Institutions Collaborating
Designing the CAT Instrument

Faculty Driven:
High Face Validity
Involved in Scoring

Construct Validity:
Learning Sciences

Engaging for Students

Reliable & Consistent Scoring
Essay Responses
Skills Evaluated by CAT Instrument

Evaluating Information
- Separate factual information from inferences.
- Interpret numerical relationships in graphs.
- Understand the limitations of correlational data.
- Evaluate evidence and identify inappropriate conclusions.

Creative Thinking
- Identify alternative interpretations for data or observations.
- Identify new information that might support or contradict a hypothesis.
- Explain how new information can change a problem.

Learning & Problem Solving
- Separate relevant from irrelevant information.
- Integrate information to solve problems.
- Learn & apply new information.
- Use mathematical skills to solve real-world problems.

Communication
- Communicate ideas effectively.
CAT Features

- One hour exam
- Mostly short answer essay
- Faculty scored in workshops
- Detailed scoring guide
- Sensitive to course effects
- Reliable
- Valid
National Dissemination Model

Institution
8 – 14 Faculty Involved in Scoring

CAT Regional Training

2 - 3 Representatives

Next June 3-4 or 6-7
A scientist working at a government agency believes that an ingredient commonly used in bread causes criminal behavior. To support his theory the scientist notes the following evidence.

- 99.9% of the people who committed crimes consumed bread prior to committing crimes.
- Crime rates are extremely low in areas where bread is not consumed.

Do the data presented by the scientist strongly support their theory? Yes ___ No____

Are there other explanations for the data besides the scientist’s theory? If so, describe.

__

What kind of additional information or evidence would support the scientist’s theory?

__
Assessment Uses of CAT

Informal Learning Experiences

Classroom Learning Experiences

Program Outcomes

Value Added Enter vs. Exit

Tracking Outcomes Over Time

College Outcomes

Norm Referenced
Closing the Loop in Assessment and Quality Improvement

- Ability to Transfer CT Skills Beyond Discipline
- Assess Student Performance
- Improve Student Learning
- Increase Faculty Awareness of Effective Practices
- Increase Faculty Awareness of Student Weaknesses (Faculty Participate in Test Scoring)
- and How to Design Better Discipline Specific Assessments
Engaging Critical Thinking To Change Faculty Minds
(Northwestern University with City Colleges of Chicago)

Overview
1. Goals & Hypotheses of study
2. Theoretical Rationale
3. Study Design
 • Participants
 • Design
 • Measures
4. Some very early findings
Goals

1. To use critical thinking as a higher-order learning skill to promote change in faculty conceptions of teaching and learning.

2. To motivate faculty to make changes to their teaching of critical thinking by providing them with data about their students’ critical thinking.

3. To see if the changes that faculty make in their teaching lead to changes in how students perform on critical thinking tests.
Hypotheses

Primary Hypotheses:
Compared to faculty in standard faculty development programs, faculty who engage in inquiry into their student’s learning will make greater changes in their:

A) conceptions of teaching

B) approaches to teaching critical thinking

i.e. they will move from a focus on transmitting content to changing student conceptions

Secondary Hypothesis
Student gains on the CAT will be larger when faculty introduce activities to enhance critical thinking

i.e. post-program gains will be greater than baseline gains
Theoretical Rationale

Faculty Approaches to Teaching:
Research\(^1\) suggests three hierarchically-related categories of Faculty approach (and related conceptions of) to teaching:

- **Transmission** (teacher centered)
- **Acquisition** (student centered)
- **Conceptual Change** (learning centered)

The third is correlated with deeper learning outcomes\(^1,2\)

Faculty Change in Approach to Teaching
Further research\(^2\) has indicated that faculty change to the third category through faculty development programs is more problematic.

Study Participants

Faculty
11 City Colleges of Chicago
&
9 Northwestern University

Anatomy
Astronomy
Biology
Calculus
Chemistry
Chemical Engineering
Electrical Engineering
Linguistics
Physics
Quantum Mechanics
Study Design

Year 1

Summer
- Preparation
 - 10 CCC & 9 NU faculty recruited
 - Faculty learn about the CAT test
 - Faculty develop course specific assessments of critical thinking (analogues) modeled on the CAT test

Fall & Winter
- Baseline
 - Data collected on faculty approaches to teaching and conceptions of critical thinking and assessment
 - Faculty teach as usual
 - CAT test & course specific assessments administered pre & post course

Year 2

Summer
- Intervention
 - Faculty review CAT & course specific assessment data
 - Faculty participate in interactive workshops on critical thinking pedagogy
 - Faculty develop plans to enhance students’ critical thinking

Fall & Winter
- Post
 - Faculty make changes to their teaching
 - CAT test & course specific assessments administered pre & post course

Year 2 Spring
- Compare: student learning gains; faculty teaching practices; faculty approaches to teaching; faculty conceptions of critical thinking & assessment
Critical Thinking Workshops

What is critical thinking?

Why critical thinking is important?

What are the barriers to critical thinking?
• In students
• In faculty teaching

Development, sharing, critiquing of activities to promote critical thinking
Study Measures

Faculty

- Approaches to Teaching Inventory (ATI) (Trigwell, Prosser & Ginns. 2005)
- Conceptions of Assessment Survey (Brown 2002)
- Interviews
- Observation of teaching practice
- Reported changes in teaching of critical thinking
- Syllabus analysis

Students

- CAT
- Course specific analogs
Faculty Commitment

Faculty Participation:
- One Northwestern faculty left program due to time commitments; and two City Colleges faculty left program in 2nd year: one became chair; one left the college.

Faculty Engagement with Program:
- All faculty were highly engaged in the process: all engaged the CAT data; attended the workshops; constructed analogues)
- All faculty developed and implemented activities to enhance critical thinking in their courses.
Activities that Faculty Developed to Promote Critical Thinking

CAT skills focus of activities
- generating alternative explanations
- identifying additional information required to evaluate a hypothesis
- solving real world problems

Variation in Activities

Intensity
- single activity vs. series of linked activities

Nature
- in class vs. homework assignment
- hands on inquiry-based activities vs. worksheet data
- group activity/discussion vs. individual work
CAT Findings: Student Gains in Critical Thinking

• Very preliminary results – still collecting the final data from one third of the courses

• Interpretation of the results will include looking closely at activities with respect to particular critical skills.

• A Case Illustration
Case Study: Critical Thinking Quiz

Northwestern Engineering Course
- Students: 15 Juniors, seniors, grad students
- Time: twice a week – Tue. & Thur. - for 1.5 hours
- Format: Presentation/discussion

CTQ Learning Outcomes
1. Develop dynamic group thinking skills.
2. Develop awareness of multiple perspectives to each problem.
3. Learn to present, defend, evaluate critical responses.
4. Develop critical skills with different team partners.
Case Study (cont.)

Description of Activity

- 20 minutes once a week (sometimes bi-weekly)
- Students break into 4-5 Quiz-Teams – of 3 students
- Each group discusses 3 problems for 5-7 min.
- Students use hole-punch to commit to multiple choice answers
- Each Quiz-Team shares their answers and reasoning for 3 minutes with the class
- Quiz-Team partners change every two quizzes
Instructor Comments on Activities

The students were engaged by the activity and were clearly invested in discussions. Spirited discussions would persist for several of the groups. Group dynamics clearly affected the collective decision -- sometimes the loudest voices in a group would talk more timid ones away from the correct answer.

Even when students all got a problem wrong, they seemed quite satisfied to have had the chance to talk through their best answer with their group, and they all seemed to recognize the missing piece which kept them from getting the correct answer when it was shown to them.
Learning Outcomes & CAT Question
(as Identified by Faculty)

Discussing problems with peers
#2 Evaluate how strongly correlation type data support a hypothesis.
#4: Identify additional (or more precisely what information is needed) information needed to evaluate a hypothesis/interpretation.
#5 Evaluate whether spurious relationships strongly support a claim.
#7: Identify additional information needed to evaluate a hypothesis/interpretation.

Develop critical skills with different team partners
#3: Provide alternative explanations for a pattern of results that has many possible causes.
#6: Provide alternative explanations for spurious relationships.

Learn to present, defend, and evaluate critical responses
#9 Provide relevant alternative interpretations of information.
Case Study: Learning Outcomes in terms of CAT Skill Areas and CAT Question

<table>
<thead>
<tr>
<th>Learning Outcomes</th>
<th>Evaluate/interpret info</th>
<th>Problem Solving</th>
<th>Creative Thinking</th>
<th>Effective Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic group thinking skills</td>
<td>2, 5</td>
<td>4, 7</td>
<td>4, 7</td>
<td>2, 4, 7</td>
</tr>
<tr>
<td>Develop awareness of multiple perspectives</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present, defend, evaluate critical responses</td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Critical skills with different team partners</td>
<td></td>
<td></td>
<td>3, 6</td>
<td>3, 6</td>
</tr>
</tbody>
</table>
Results: Student Gains in Critical Thinking

-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1
1.2
1.4

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

EECS 384 2012 n=7
EECS 384 2013 n=9
Results: Student Gains in Critical Thinking
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.