

With Support from National

Science Foundation &

National Security Agency

(Award# H98230-22-1-00098)

GenCyber

2023

Tennessee Tech

Arduino Password Gen
Student’s Guide

 Page | 2

Arduino Uno Random Password Generator

- Overview -

What is an Arduino Uno?

An Arduino Uno is a microcontroller board. A microcontroller is an electronic component that a

single set of instructions repeatedly. These boards are commonly imbedded into larger boards

to perform more complicated tasks. With boards like the Arduino Uno, you can write a program

that grabs data from sensors or other types of input and perform tasks based off the input. In

this activity you will be programming an Arduino Uno to generate a password when you press a

button.

Step 01: Programming

The first step of any Arduino project is to lay out what you want to do and then program the

board to fulfil that intended purpose. In this exercise, we will be making a program that will

provide a secure password when you push a button. If you have programmed before, these

programs look a lot like C/C++ programming. So, go to the Arduino IDE software and open an

empty file. The first thing all programs need is the init() and loop() functions pictured below.

As you might suspect, the setup function will only run once at the start of the program so this

function is often filled with setup before actual work is done. The loop function will continually

run until the program is stopped and this is where the actual work will be done. Before we move

on to what is inside those function we will need two global variables at the top of the file as seen

below.

 Page | 3

These line assign the value of 2 to buttonPin and 0 to lock. Lock will be explained later but

buttonPin is the variable that describes where on the board to look for the button input, so when

we get to the hardware portion we will be using pin 2.

This is what should be inside of the setup() function. The first line Serial.begin(9600) sets up a

connection between the board and your computer on the frequency of 9600. The second line

ranndomSeed(milis()); sets up a random number generator based on the current millisecond.

The last line pinMode(buttonPin, INPUT_PULLUP); sets up the connection to the button as an

input on pin 2 and sets a standard value so that it can know when the button is pressed.

This is a lot so let’s start with the first if statement. It checks two things, first it reads the input

value of pin 2 and compares it to LOW (checks if the button is pressed) and the second

compares lock to 0. If both of those things are true (&&) then the next three lines are executed.

So randomString will be generated by the generateRandomString() function which we will make

later. Serial.println(randomString); will print the randomly generated string to the link to your

computer so you can see it in the Arduino IDE. Lock will be set to 1.

After the first if statement there is a delay of 10 seconds. Then the second if statement is hit.

This statement just checks the value of pin 2 and compares it to HIGH (checks if the button is

not pressed). If that is true then it will set lock back to 0. If we did not have this if statement then

the lock would not be reset and we would only get one good button press/password generated.

The lock restricts the password generation to one password per push of the button, without the

lock, as long as the button is pressed passwords will be continually generated.

The final step of the program is to define the function that randomly generates the password

which is pictured below.

 Page | 4

The first line says the name of the function and that it will produce a string value. The next two

lines define two arrays that outline all the possible special characters and letters that can be

used when generating the string. The next line String randomString = “”; defines the variable

that we will be building the string in.

The next section is a for loop, as we have defined, it will loop 8 times (0-7). So for each run of

the loop first it will generate a 0, 1, or 2 and assign the value to randint. If randint is 0 then it will

randomly pick a special character and add it to the end of randomString. If randint is 1 or 2 then

it will randomly pick a normal letter and add it to the end of randomString. Once the loop has run

8 times then the function will return the randomString it has built.

Step 02: Hardware

Go ahead and plug the USB cable into the Arduino Uno and a port on the computer. Also take

out a button, 4 wires, and the breadboard. There are a couple things to note about

breadboarding before we get started.

 Page | 5

This image shows the various rails on the breadboard. Rails refer to the ports that are

connected together, so when one port receives power all the other ports also receive power. So

as the image shows, there are 2 long rails on each side of the breadboard. These specific rails

are used to provide power (+) and ground (-) the board. For each row there are two sperate rails

that are not connected together. When wiring projects please keep in mind where the power will

actually flow.

Please set up your breadboard to look similar to the image above.

 Page | 6

Have one wire in the top of both of the power and ground rails. Place the button to where it

covers the divide between the two section of the row rails. Have one wire connect one side of

the button to the ground rail and the final wire connects the other side of the button to the

Arduino as pictured below. Also connect the power wire to the 5V port and the ground wire to

one of the ports labeled GND on the Arduino as pictured below.

Step 03: Execution

To execute the program, we first need to compile it. To do this just click the checkmark in the

Arduino IDE, if there are any errors that appear please review the above section about software.

Then we will need to upload the code to the Arduino board. First make sure the Arduino is

plugged into the computer and then select the Arduino in the dropdown pictured below. Once

that is selected you can click the right arrow to upload the code to the board.

 Page | 7

To see the password that is generated you will need to go under tools and click Serial Monitor

and make sure the baud is the same as you set in the code for us it should be 9600.

 Page | 8

Then each time you push the button you should see a new password appear in the serial

monitor window pictured below.

Step 04: Other Resources

This project was modified from this original creator: https://lilkittykat.hashnode.dev/a-password-

generator-on-an-arduino

If you would like to download the Arduino IDE at home you can find it here:

https://www.arduino.cc/en/software

For other types of projects, you can go here: https://docs.arduino.cc/built-in-examples/

https://lilkittykat.hashnode.dev/a-password-generator-on-an-arduino
https://lilkittykat.hashnode.dev/a-password-generator-on-an-arduino
https://www.arduino.cc/en/software
https://docs.arduino.cc/built-in-examples/

