


## Al in Academics: A Paradigm Shift In Pedagogy

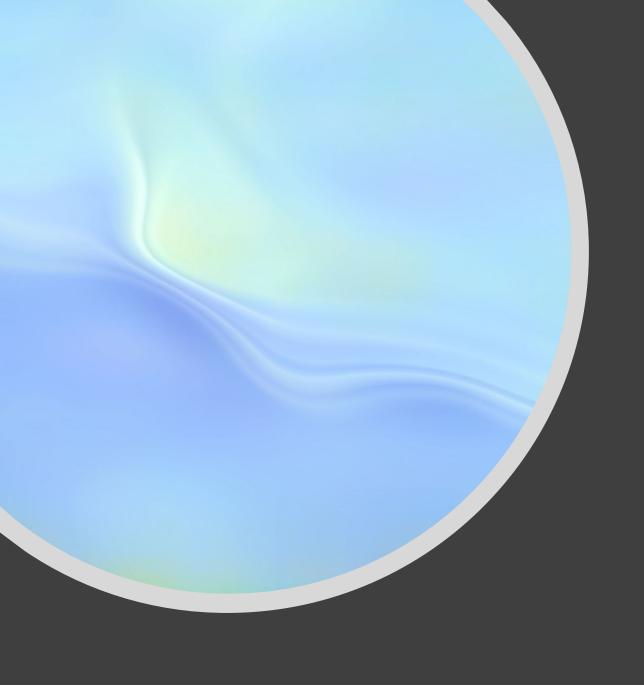
Jason Beach, PhD

Professor and Director Center for Innovation in Teaching and Learning (CITL)



#### The Overview




The future of education



Strategies to mitigate the use of Al



Strategies on how you can use Al



The Future of Education  $\rightarrow$  Enhanced by Al Personalized Learning



Flexible Pacing



Individualized Instruction



Student-Centered Learning



Data-Driven Instruction



The Future of Education  $\rightarrow$  Enhanced by Al Adaptive Learning



Assessments



Content



Delivery



**Progress monitoring** 

# The Future of Education > Enhanced by Al Intelligent Tutoring Systems

<u>Cognitive Tutor</u>: A study conducted by Carnegie Mellon University found that high school students who used the Cognitive Tutor ITS for algebra performed significantly better on standardized tests than students who received traditional classroom instruction.

<u>ALEKS</u>: A study conducted by the University of California, Irvine found that college students who used the ALEKS ITS for math instruction achieved significantly higher grades than students who received traditional classroom instruction.

<u>DeepTutor</u>: A study conducted by the University of Memphis found that students who used the DeepTutor ITS for science instruction achieved significantly higher learning gains than students who received traditional classroom instruction.

**<u>iSTART</u>**: A study conducted by the University of Pittsburgh found that students who used the iSTART ITS for reading comprehension achieved significantly higher learning gains than students who received traditional classroom instruction.



Al and the future of work - what it may look like...



Automation of routine tasks that are consistent and vary little day-to-day and month-to-month.



More demand for Data Scientists, AI Engineers, and Machine Learning Specialist.



More focus on soft skills and care giving fields.



Careers that focus on human-to-human interaction will require more interpersonal skills and interaction.



Careers that require nuanced decision making will be less vulnerable, but still impacted.



#### \_\_\_\_or\_mod.mirror\_object Al in Education: Causes for Concern



**Data Privacy** and Security



Integration with Bias and **Existing Systems** Fairness

lrror\_mod.use\_z = False operation == "MIRROR Z" rror\_mod.use x = False rror\_mod.use\_y = False rror\_mod.use\_z = True



Training and Support



Ethical Considerations

```
X mirror to the selected
ject.mirror_mirror_x"
TOP Y
```

is not

```
modifier_ob.
  mirror object to mirror
mirror_mod.mirror_object
peration == "MIRROR_X":
irror_mod.use_x = True
mirror_mod.use_y = False
lrror_mod.use_z = False
 operation == "MIRROR_Y"
irror_mod.use_x = False
"Irror_mod.use_y = True"
lrror_mod.use_z = False
  operation == "MIRROR_z"
  rror_mod.use_x = False
  _rror_mod.use_y = False
  rror_mod.use_z = True
  Melection at the end -add
   ob.select= 1
   er ob.select=1
   ntext.scene.objects.action
   "Selected" + str(modified
    rror ob.select = 0
  bpy.context.selected_obj
   ata.objects[one.name].sel
  int("please select exaction
  --- OPERATOR CLASSES ----
      mirror to the selected
    ect.mirror_mirror_x
  ext.active_object is not
```

## Precarious Pedagogical Precipice: What can we do?

This is not like plagiarism; it is completely different.

- Ineffective Detectors...serious validity and reliability questions.
  - GPTZero
  - Corrector App
  - OpenAl's Al Text Classifier
- The Old Favs still work.
  - Respondus LockDown Browser
  - Respondus Monitor

# So...What should we do now?

- Have a frank conversation with students about academic integrity and remind them of University's policies.
  - Specifically, Policy 217, Section 4.
- Ask students pointed questions about integrity and their future.
  - What's the point of pursuing a degree, and taking classes if you don't learn?
  - Taking small shortcuts today, lead to big gaps in the future.
    - Shortcuts = Big Gaps = rough road, so do the work.
- Ask students to reflect and take ownership of their learning.

#### It's time to rethink "plagiarism" and "cheating"

Botcreated

Which of these would you consider "cheating"?

Which of these is relevant to our students' future?

Which of these would you use in your work as an adult?

DITCH THAT TEXTBOOK

Studentcreated Student plugged prompt into AI, copied response and submitted it to teacher.

Al created a response. Student read, edited, adjusted, and submitted.

Student created multiple AI responses, used the best parts, edited, and submitted.

Student wrote main ideas. Al generated a draft and offered feedback to improve.

Student consulted internet/AI for ideas, then wrote and submitted.

Student wrote all assignment content without consulting AI or the internet.

# It is time to rethink our assignments and assessments.



How well do your assignments relate to the learning objectives of the course?



Are the assignments realistic, tied to the real-world and their future career?



Are the assignments varied in nature, drawing on different learning strengths and styles of students?



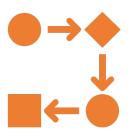
Are the assignments scaffolded? Are there steps and opportunities for practice and feedback to support and reinforce success?

## Strategies to mitigate the use of Al in your assignments.

01

Design, develop, and refine authentic assignments your courses.

 Authentic assignments challenge Al because it working off a confined data set. 02


Look at your students' work in multiple ways.

 Utilize different types of assessments (i.e., portfolios, role playing, case studies) makes it difficult for students to use AI to complete assignments. 03

Lower the stakes and lower cheating.

 Large assignments broken down into small chunks provides more feedback opportunities for students, and less reason to cheat.

## Strategies to mitigate the use of Al in your assignments.



### Have students submit drafts of their work.

Provides opportunities for you to see and analyze changes from one draft to the next. Word allows you to <u>track document changes</u>.



## Create assignments that promote higher-order thinking.

Al works well with "General" information, not so much "Nuanced" information.

## Strategies to mitigate the use of Al in your assignments.

- Develop assignments that have multiple components.
  - Weak Assignments
    - Single topic research papers
    - Pros and Cons arguments
    - Summarizing passages
    - Single assignment writing prompts

## More Robust Assignments: Just-In-Time-Teaching (JiTT) Questions.



They encourage student responses by addressing myths, misconceptions, or biases.



They examine student to examine their prior knowledge and experience.



They are ambiguous and require students to additional information that has not explicitly given in the question.



They require students to formulate responses utilizing underlying concepts in their own words.

#### JiTT Example

- Are Panda Bears Worth Saving?
  - Why are Pandas not reproducing?
  - Why do they continue to eat bamboo, when their body has not adapted to the high fiber count of the plant?
  - Are they worth the cost? Pandas are rented from China, and cost millions of dollars per year. If a cub is born, there is an additional tax from China.
  - Are Pandas still considered a symbol of diplomacy and goodwill between China and other countries?

## More Robust Assignments: Wicked Assignment Design.



Instead of relying on other sources, students are encouraged to take risk and come up with their own solutions.



Breaks the belief that instructors want students to regurgitate or replicate what others have said about the topic.



Students assume authority and ask, "so what?" questions. They must make judgements and decisions on context that may be uncertain or change day-to-day.

## Wicked Example

- You are running for president.
  - Explain to your constituents the similarities and differences of Rome and the US.
  - Explain the political, religious, economic and social problems of Rome and how they may or may not relate to the US.
  - Present your information in an intelligent yet personable tone demonstrating conviction and national pride.



Three factors for transparent assignment design: Purpose, Task, and Criteria.



Purpose: Define skills are practiced and what knowledge is gained.



Task: Explain what students are expected to do and how they are to take responsibility for their own learning.



Criteria: Provide a rubric or checklist including examples with annotated feedback.


## More Robust Assignments: Transparency in Learning and Teaching Design (TILT).

#### TILT Example

- In a large introductory STEM and Humanities course (65-300 students).
  - Purpose: Discuss assignments' learning goals and design rationale before students begin each assignment.
  - Task: Gauge students' understanding during class through think-pair-share-analyzesummarize.
  - Criteria: Debrief graded tests and assignments in class.

Be more engaging than AI. Engaging your students in class builds relationships.

- Minute Paper
- Class Content Journals
- Think Pair Share Analyze Summarize
- Polling Students
- Pause and Reflect
- Intentional Mistakes
- Mind Mapping



# Leverage the power of Al in your classroom.

- Feedback Assistant
- Debate Partner
- Additional Point-of-View
- Prompt Generator
- Quiz Creator

# Questions for you and your colleagues

- How will I define cheating in my course and my program?
- How are we going to prepare students for Al in our field of study?
- What is something I can do to day to better understand AI and the future of education?
- Who in my department, college, and university can I lean on for curriculum support and guidance?
- How will I approach the use of AI in my courses and my program?

References and Resources for Learning, and Learning about Al

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167-207.

Bailey, A. L., & Ginther, A. (2017). iSTART: Investigating the effectiveness of a strategy-based reading comprehension tool. Journal of Educational Technology & Society, 20(1), 171-181.

Bransford, J.D., Brown, A.L., and Cocking, R.R. (Eds.) (1999). How people learn: Brain, mind, experience, and school. Washington, D.C.: National Academy Press.

Carr, R., Palmer, S., and Hagel, P. (2015). Active learning: the importance of developing a comprehensive measure. Active Learning in Higher Education 16, 173-186.

Cu, M.A. & Hochman, S. (2023). <u>Scores of Stanford students used ChatGPT on final</u> exams, survey suggests. The Stanford Daily.

Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K., & Kestin, G. (2019). Measuring actual learning versus feeling of learning in response to being actively engaged in the classroom. *Proceedings of the National Academy of Sciences*, 116(39), 19251–19257.

D'Mello, S. K., Dowell, N. M., & Graesser, A. C. (2011). The impact of affective states on dialog and learning with AutoTutor. International Journal of Learning Technology, 6(2), 146-164.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. *Proceedings of the National Academy of Sciences*, 111(23), 8410–8415.

#### References...

Handstet, P. (2018). Creating wicked students: Sesigning courses for a complex world. Stylus.

Marr, B. (2023). ChatGPT: Everything You Really Need to Know (In Simple Terms). Future Tech Trends.

Miller, M. (2022). "ChatGPT, Chatbots and ARtificial Intelligence in Education." Ditch That Textbook. Retrieved from https://ditchthattextbook.com/ai/

Prince, M. (2004) Does active learning work? A review of the research. Journal of Engineering Education 93 (3) 223-231.

Roose, K. (2023). "Don't Ban ChatGPT in Schools. Teach With It.: The Shift." The New York Times.

Simkins, S. & Maier, M. H. (2010). *Just-In-Time Teaching: Across the Disciplines, Across the Academy*. Stylus

Winkelmes, M. (Spring 2013). Transparency in teaching: Faculty Share data and improve student learning. *Liberal Education*, AAC&U, 99 (2).

Wang, X. C., & Hartley, K. (2018). A comparison study of ALEKS and MyMathLab in a developmental mathematics course. Journal of Computers in Mathematics and Science Teaching, 37(3), 237-257.