WRITING DLL IN ASSEMBLER
FOR EXTERNAL CALLING IN
MAPLE

DR. ALEC MIHAIOVS

JULY 2004

No. 2004-5

TENNESSEE TECHNOLOGICAL UNIVERSITY
Cookeville, TN 38505
Writing DLL in Assembler for External Calling in Maple

by Alec Mihailovs, Ph.D.
Department of Mathematics
Tennessee Tech University

alec@mihailovs.com

Copyright © 2004 Alec Mihailovs

NOTE: The article shows how to write assembler code using x86 and FPU registers. An example of calculating large factorials mod m is discussed in detail.

Introduction

This article started from a posting [1] in comp.soft-sys.maple newsgroup where I wrote:

In general, such calculations as huge factorials mod p should be programmed directly in assembly. It is fairly easy and doesn't require much assembly knowledge - just a few instructions. It can be compiled as a library (dll) and accessed from Maple through external calling.

Since quite a few people expressed an interest, I wrote the assembly code for that particular problem. I hope that it will be useful as a jump-start for writing your own DLL for the innermost loops repeating a billion times or more. For loops repeating "only" a few million times, the DLL could be written in C and other high level languages, but for billions of operations high level languages are too slow.

To produce a DLL, one needs an assembler. I used MASM32 v.8 [2] which can be downloaded from http://www.masm32.com. Many people consider MASM (Microsoft Assembler) language as "standard". I used it here for creating a DLL in Windows. It produces object files in COFF (Common Object File Format), so they can be used for building a library in Linux as well.

> restart;

Section I: Writing a DLL in Assembly Language

To produce a dll, put 3 files, Facmod.asm, Facmod.def, and Makeit.bat in one directory, and run Makeit.bat (by clicking on it in Windows Explorer, or opening Facmod.asm in qeditor (which is a part of the MASM32 distribution) and running Makeit.bat from the Project menu. Here are the files:
Facmod.asm

```
.586                                     ; for 586 processor or better
.model flat, stdcall                     ; 32-bit memory and standard
.code                                    ; call
 LibMain proc h:DWORD, r:DWORD, u:DWORD   ; the dll entry point
     mov eax, 1                       ; if eax is 0, the dll won't
     ret                              ; start
 LibMain Endp                             ; return

 Facmodp proc n:DWORD, p:DWORD            ; a function with dword
     push ebx                         ; parameters n and m
     mov ecx, n                       ; save the ebx value
     mov ebx, p                       ; put n in the counter
     mov eax, 1                       ; register ecx
     L:                                   ; put p in ebx
     mul ecx                          ; put l in eax
     div ebx                          ; a loop label
     mov eax, edx                     ; multiply eax by ecx
     dec ecx                          ; divide the product by p
     mov eax, edx                     ; move the remainder from edx
     jnz L                            ; to eax
     pop ebx                          ; decrease the counter by 1
     ret                              ; repeat the loop if the
 Facmodp endp                             ; counter is not 0
 End LibMain                              ; restore the ebx value
                                              ; end of the function
                                              ; end of the dll
```

Facmod.def

```
LIBRARY   Facmod
EXPORTS   Facmodp
```

Makeit.bat

```
@echo off

if exist Facmod.obj del Facmod.obj
if exist Facmod.dll del Facmod.dll

\masm32\bin\ml /c /coff Facmod.asm

\masm32\bin\Link /SUBSYSTEM:WINDOWS /DLL /DEF:Facmod.def Facmod.obj

pause
```

That will produce 4 files, Facmod.dll, Facmod.lib, Facmod.exp, and Facmod.obj.

Files Facmodp.def and Makeit.bat are self-explanatory. I'll add detailed comments here on Facmod.asm.
Facmod.asm commented

.586
.model flat, stdcall
This is the standard beginning of the asm files for MASM32. They tell the assembler that
the program will be used in computers with 586 processor or better, with 32-bit memory
addressing, and use stdcall calling convention.

.code
The beginning of the code section.

LibMain proc h:DWORD, r:DWORD, u:DWORD
 mov eax, 1
 ret
LibMain Endp
Creating the dll entry point. If eax is 0, the dll won't start, so we put 1 there.

Facmod proc n:DWORD, p:DWORD
The beginning of our function. It has two dword = 4 byte = 32 bit parameters, n and p.

 push ebx
In Windows and Linux, registers eax, ecx, and edx can be arbitrarily modified by
programs, but other registers including ebx should be preserved, so we are pushing the
ebx value on the stack at the beginning of the program and will restore it back before the
end of the program.

 mov ecx, n
Put n in the counter register ecx.

 mov ebx, p
Put p in the ebx register.

 mov eax, 1
Put 1 in the eax register.

 L:
A loop label.

 mul ecx
Multiply eax*ecx and put result in edx:eax, i.e. the beginning of it in edx and the last 32
bits in eax.

 div ebx
Divide edx:eax (the result of multiplication) by ebx = p and put the quotient in eax and
the remainder in edx.

 mov eax, edx
Move the remainder from edx to eax.
Dec ecx
Decrease the counter (ecx) by 1. We start from \(n \) there. It becomes \(n - 1 \) after the first loop, \(n - 2 \) after the second etc.

jnz L
If counter is not 0, return to label L, otherwise continue below.

pop ebx
Restore the ebx value from the stack.

ret
Return.

Facmodp endp
The end of our function.

End LibMain
The end of the DLL.

The integer return value of the function is located in the eax register (that is a standard thing in Windows).

For the sake of simplicity, I didn't do any optimization of the calculating procedure, or adding at the beginning that if \(n > p - 1 \), then the result is 0, or checking whether \(p \) is 0. I'll do that in Section 3.

Section II: External Calling of Facmodp in Maple

In Maple,
> Facmodp := define_external(
 'Facmodp',
 'n'::integer[4],
 'p'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
with changing the LIB to the location of Facmod.dll creates a function calculating \(n! \) mod \(p \). For example,
> Facmodp(10^9,10^9+7);
\[
698611116
\]
that took just a few seconds on my computer instead of the many hours that a procedure written in Maple without external calling would.

Note that in the definition of external call we used the integer[4] data descriptor for \(n \) and
It takes 4 bytes, the same as DWORD in the assembly code. The sign in the integer uses 1 bit, so we can use positive values less than

\[2^{31}; \]

2147483648

for \(n \) and \(p \). However, keeping in mind that negative integers have the highest bit 1 (the minus sign) in their 32-bit representation, we can use negative integers for representing unsigned integers up to

\[2^{32}-1; \]

4294967295

Conversion formulas

The conversion formulas are very simple. Denoting \(s \) as the negative signed integer and \(u \) the unsigned integer having the same 32-bit representation in the memory (and registers),

\[
\begin{align*}
 s &= u - 2^{32}, \\
 u &= s + 2^{32}.
\end{align*}
\]

For example, let

\[u := \text{prevprime}(2^{32}); \quad u := 4294967291 \]

\[s := u - 2^{32}; \quad s := -5 \]

\[\text{Facmodp}(1000,-5); \quad 444887038 \]

Maple calculates 1000! pretty fast, so we can check the answer by a direct calculation,

\[1000! \mod u; \quad 444887038 \]

The returned values also should be converted if they are negative. For example,

\[\text{Facmodp}(1001,-5); \quad -1344673231 \]

\[1001! \mod u; \quad 2950294065 \]

\[%\%+2^{32}; \quad 2950294065 \]

Also, for prime \(p \), Wilson's theorem allows us to do less calculations for \(n > p/2 \).

Wilson's Theorem

If \(p \) is a prime number, then

\[(p - 1)! = (-1) \mod p .\]
Corollary
If a positive integer \(n \) is less than a prime number \(p \), then

\[
n! = \frac{(-1)^{(p-n)}}{(p-n-1)!} \mod p.
\]

Proof. Using equality \(p - k = -k \mod p \) and substituting \(p - 1 \) with \(-1\), \(p - 2 \) with \(-2\), and so on, ..., \(n + 1 \) with \(n + 1 - p \), in \((p - 1)!\), we can rewrite the Wilson's formula as

\[
n! (-1)^{(p-n-1)} (p - n - 1)! = (-1) \mod p.
\]

Dividing both parts by \((-1)^{(p-n-1)} (p - n - 1)!\), we get the corollary.

Note also that Facmodp cannot be used for \(n \) or \(p \) equal to 0. Entering \(p = 0 \) would crash Maple's kernel (so Maple would have to be restarted after that). Using \(n = 0 \) would take a long time and give the answer 0. Combining all that, I wrote the following procedure that should be used instead of the direct use of Facmodp.

```maple
> facmodp := proc (n::nonnegint, p::posint)
local r;
if p <= n then return 0
elif n = 0 then return 1
elif p>4294967295 then error "2nd argument %1 should be less than 4294967296", p
elif 1/2*p < n and isprime(p) then
    if n = p-1 then return p-1
    elif p < 2147483648 then r := Facmodp(p-n-1,p)
    else r := Facmodp(p-n-1,p-4294967296)
    end if;
    return `mod`((-1)^((p-n)/`if`(r < 0,4294967296+r,r),p)
    else r := Facmodp(`if`((n < 2147483648,n,n-4294967296),`if`((p < 2147483648,p,p-4294967296))
    end if;
    `if`((r < 0,4294967296+r,r)
end proc:

Here are some examples,

> facmodp(0,1);

1

> tt:=time():
> facmodp(10^9,10^9+7);

698611116
Even better, both Facmodp and facmodp can be included in a module, with exporting only facmodp to prevent the possibility of crashing Maple's kernel by entering $p = 0$. That is a typical example of using external calls in Maple. Instead of direct call, it is much better in many cases to add a Maple "wrapper" for it. In this example, facmodp is extending the range of using Facmodp, making calculations much faster in cases with $n$ close to a prime $p$, and preventing Maple crashing.

**Section III: Some Improvements**

Returning 0 for $n > p$ could be done at the beginning of the assembly code for the Facmodp function. To be able to jump to the end, one can add a label $E$ before the popping of ebx at the end. Returning 0 if $n > p$ can be done by adding the following lines before putting 1 in eax,

```
mov eax, 0 ; put 0 in eax for returning 0
 cmp ecx, ebx ; compare n and p
 jae E ; if n>=p, exit returning 0
```

Also, we can add the code returning 1 if $n = 0$ before the loop, when 1 is in eax,

```
test ecx, ecx ; it is faster than jecxz E
 jz E ; if n=0, exit returning 1
```

If we are going to use it for cases with not necessarily prime $p$, the factorial is 0 for many cases, and in these cases we can return 0 right after it first appears in eax, because the rest of the calculations won't change that.

```
mov eax, edx ; move the remainder from edx
 test eax, eax ; if the remainder is 0,
 jz E ; then exit returning 0
```

As usual, when we have a working function, Facmodp, it is better not to change it, but add a renamed copy of it in the dll (before the End LibMain line) and make changes there. Here is the improved function Facmodm.

**Facmodm**

```
Facmodm proc n:DWORD, m:DWORD ; a function with dword
 ; parameters n and m
 push ebx ; save the ebx value
 mov ecx, n ; put n in the counter
 ; register ecx
 mov ebx, m ; put p in the base register
 ; ebx
 mov eax, 0 ; put 0 in eax for returning 0
 ; if n>=p
 cmp ecx, ebx ; compare n and p
```
jae E ; if n>=p, exit returning 0
mov eax, 1 ; put 1 in eax
test ecx, ecx ; it is faster than jecxz E
jz E ; if n=0, exit returning 1
L:
    mul ecx ; multiply eax by ecx
div ebx ; divide the product by p
    mov eax, edx ; move the remainder from edx to eax
test eax, eax ; if the remainder is 0,
jz E ; then exit returning 0
dec ecx ; decrease the counter by 1
jnz L ; repeat the loop if the counter is not 0
E:
    pop ebx ; restore the ebx value
    ret ; return eax
Facmodm endp ; end of the function

To make a dll, we can use the same Makeit.bat file, but Facmod.def should be modified by adding the new export,

**Facmod.def**

LIBRARY Facmod
EXPORTS Facmodp
EXPORTS Facmodm

In Maple, we can define the external call to Facmodm similarly to Facmodp,

```maple
Facmodm:=define_external(
 'Facmodm',
 'n'::integer[4],
 'm'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
```

Test its speed,

```maple
> time(Facmodp(10^8,10^8+7));
5.878
```

```maple
> time(Facmodm(10^8,10^8+7));
6.390
```

So, Facmodm is about 10% slower, because of the additional operations inside the loop. However, it compensates by faster calculations for composite $p$,

```maple
> time(Facmodm(10^8,10^8+9));
0.049
```

Facmodm can be extended to larger values of $n$ and $p$ similarly to facmodp. I included the corresponding function facmodm in the module below.

Now, when we have fast function facmodp for prime $p$ and fast function facmodm for composite $p$, we can write a module, including them as well as the function facmod
working in both cases, which chooses facmodp if \( p \) is prime and facmodm otherwise. Since we suppose that facmodp will be used only for prime \( p \), we can delete checking whether \( p \) is prime from its definition. Here is the module.

**Facmod module**

```plaintext
> Facmod:=module()
local Facmodp, Facmodm;
export facmod, facmodp, facmodm;
description "The functions in this module calculate n! mod p. If p is prime, facmodp(n,p) should be used. If p is composite, facmodm(n,p) should be used. If p can be prime or composite, facmod(n,p) should be used. The functions work for n and p less than 2^32."
Facmodp:=define_external(
 'Facmodp",
 'n':::integer[4],
 'p':::integer[4],
 'RETURN':::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
facmodp := proc (n::nonnegint, p::posint)
local r;
 if p <= n then return 0
 elif n = 0 then return 1
 elif p>4294967295 then error "2nd argument %1 should be less than 4294967296", p
 elif 1/2*p < n then
 if n = p-1 then return p-1
 elif p < 2147483648 then r := Facmodp(p-n-1,p)
 else r := Facmodp(p-n-1,p-4294967296)
 end if;
 return `mod`((-1)^(p-n)/`if`(r < 0,4294967296+r,r),p)
 else r:=Facmodp(`if`(n<2147483648,n,n-4294967296),`if`((p<2147483648,p,p-4294967296))
 end if;
 `if`(`r < 0,4294967296+r,r)
end proc;
Facmodm:=define_external(
 'Facmodm",
 'n':::integer[4],
 'm':::integer[4],
 'RETURN':::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
facmodm := proc (n::nonnegint, p::posint)
local r;
```
if \( p \leq n \) then return 0

elif \( p > 4294967295 \) then error "2nd argument %1 should be less than 4294967296", \( p \)

else

\( r := \text{Facmodm}(`\text{if}`(n<2147483648,n,n-4294967296),`\text{if}`(p<2147483648,p,p-4294967296)); `\text{end if}`; `\text{if}`(r < 0,4294967296+r,r) `\text{end if}`;

end proc;

facmod := proc (n::nonnegint, p::posint)
if isprime(p) then facmodp(n,p)
else facmodm(n,p)
end if
end proc
end proc

Section IV: Using Floating Point Registers

There are 2 ways of extending our calculations of \( n! \mod p \) for \( p > 2^{32}-1 \). First - using the gmp library for operations with multiple precision integers, and second - using the floating point stack. In this section we'll cover the second case. It doesn't extend values of \( p \) too much, but still it can be useful for some calculations. The following assembler function is analogous to Facmodp, just operates in floating point registers and returns a floating point number instead of an integer.

Fmodp

Fmodp   proc n:QWORD, p:QWORD            ; a function with qword parameters n and p
         fninit                           ; initialize the floating point stack
         fild qword ptr [n]               ; put n in the FPU
         fild qword ptr [p]               ; st=p, st(1)=n
         fld1                             ; st=1, st(1)=p, st(2)=n
L:                                   ; a loop label
         fmul st, st(2)                   ; st=st*st(2)
         fprem                            ; st=st mod p
         fld1                             ; st=1, st(3)=counter
         fsub st(3), st                   ; st=1, st(3)=counter-1
         fcomp st(3)                      ; compare 1 and st(3) and pop the stack
         fnstsw ax                        ; store the status word in ax
         shr ah, 1                        ; it is faster than sahf
         jc L                             ; repeat the loop if the counter is > 1
         fstp st(2)                       ; put the return value at the bottom
         fstp st                          ; clear the floating point stack
         ret                              ; return st
Fmodp   endp                             ; end of the function

To see how it is working, we can add it to the Facmod.asp before the End LibMain, add
the line EXPORT Fmodp to the Facmod.def and run Makeit.bat. If Maple was using external calls to functions from Facmod.dll, it should be shut down and then started again. The restart command is not enough for replacing the dll.

The external call in this case looks slightly different than for Facmodp. First, notice that we used QWORD = 64 bit parameters. The corresponding Maple data descriptor is the integer[8]. Second, if we want to get the returned value from the FPU, it should be declared in the external call as a floating point number, float[8] to get higher precision.

```maple
>Fmodp:=define_external(
 'Fmodp',
 'n'::integer[8],
 'p'::integer[8],
 'RETURN'::float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
```

It does calculations more slowly than Facmodp though. For example,

```maple
> tt:=time():
> Fmodp(10^8,10^8+7);
0.69861116 10^8
> time()-tt;
14.171
```

However, it doesn't crash Maple for p = 0.

```maple
> Fmodp(3,0);
Float(undefined)
```

It would give a wrong answer if \( n \) is non-positive though. That's why it is a good idea again to use it not directly, but through a Maple procedure excluding such bad input cases.

Also, it can be optimized. Agner Fog wrote a great optimization manual [3] for different Pentium processors. The optimizations steps are different for different processors, so I'll do just one optimization here - replacing the slow fprem opcode with a calculation of \( N \) mod \( p \) using formula

\[
N \mod p = N - \text{round} \left( \frac{N}{p} \right) p .
\]

Using truncation instead of rounding would always give a non-negative remainder. However, Pentium processors don't have an operation for truncation - only for rounding.

\section*{Fmodp1}

Fmodpl proc n:QWORD, p:QWORD ; a function with qword parameters n and p
    fninit ; initialize the floating point stack
    fild qword ptr [n] ; put n in the FPU
    fild qword ptr [p] ; st=p, st(1)=n
Again, before using it, we have to add the export of Fmodp1 in Facmod.def, rebuild the dll, shut down Maple, and start it again. Here is the external call for it in Maple,

```
> Fmodp1:=define_external('Fmodp1',
 'n':integer[8],
 'p':integer[8],
 'RETURN':float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
```

Compare the speed for the same example,
```
> time(Fmodp1(10^8,10^8+7));
11.756
```

Faster than Fmodp and about twice as slowly as Facmodp.

Because we used the rounding instead of truncation, the answer can be negative. For example,
```
> Fmodp1(1001,10^8+7);
-0.15297205 10^8
```
```
> 1001! mod (10^8+7);
84702802
```
Few examples that I did, gave the correct answers for $p$ up to about

$$2^{49};$$

$$562949953421312$$

The larger numbers can give a wrong answer. For example,

```plaintext
> a:=nextprime(7*10^14);
 a := 700000000000051
> Fmodp1(50000,a);
 0.62464041057077 10^{14}
> 50000! mod a;
 62464041057077
Correct!
```

```plaintext
> a:=nextprime(75*10^13);
 a := 750000000000037
> Fmodp1(50000,a);
 0.122439131674460 10^{15}
> 50000! mod a;
 113105262280640
Wrong!
```

It would be interesting to find a precise bound $M$ such that all $Fmodp1(n, p)$ give the correct answers for positive integers $n$ and $p$ less than $M$.

As we did in Section III for Facmodp, we can improve $Fmodp1$ by giving the answer 1 for non-positive $n$ and the fast answer 0 for $n > p - 1$. The following assembler code for $Fmodm$ does that. It also adds checking if the answer is 0 inside the loop, the same as in Facmodm.

**Fmodm**

```plaintext
Fmodm proc n:QWORD, p:QWORD ; a function with qword
 fninit ; parameters n and p
 fld1 ; initialize the floating
 ; point stack
 fild qword ptr [n] ; st=n, st(1)=1
 fcomp st(1) ; compare n and 1 and pop the
 ; stack
 fnstsw ax ; store the status word in ax
 and ah, 41h ; it is faster than sahf
 jnz E ; if n<=1, exit returning 1
 fstp st ; clear the stack
```

> %= (10^8+7);  \quad -15297205

> 2^{49};  \quad 562949953421312

> a:=nextprime(7*10^14);
    a := 700000000000051
> Fmodp1(50000,a);
    0.62464041057077 10^{14}
> 50000! mod a;
    62464041057077
Correct!

> a:=nextprime(75*10^13);
    a := 750000000000037
> Fmodp1(50000,a);
    0.122439131674460 10^{15}
> 50000! mod a;
    113105262280640
Wrong!
fldz                         ; put 0 in the FPU for
fld qword ptr [n]            ; returning 0 if n>=p
fld qword ptr [p]            ; st=n, st(1)=0
fcompp                       ; st=p, st(1)=n, st(2)=0
fnstsw ax                    ; compare p and n and pop them
and ah, 41h                   ; off the stack
jnz E                        ; store the status word in ax
fstp st                      ; it is faster than sahf
fld qword ptr [n]            ; if p<=n, exit returning 0
fld qword ptr [p]            ; clear the stack
fmul st, st(1)               ; put n in the FPU
fld1                          ; st=1, st(1)=n
fdiv st, st(1)               ; st=1/p, st(1)=p, st(2)=n
fld1                          ; st=1, st(1)=1/p, st(2)=p,
L:                            ; st(3)=n
    fmul st, st(3)           ; a loop label
    fild st                 ; st=st*st(3)
    fdiv st, st             ; save the product, st(2)=1/p,
    fmul st, st(2)          ; st(3)=p
    frndint                 ; st=product/p
    fmul st, st(3)          ; st=round(product/p)*p
    fsubp st(1), st         ; st=product-
    ftst                      ; round([product/p])*p
    fnstsw ax                ; check if st=0
    and ah, 40h              ; store the status word in ax
    jnz S                    ; it is faster than sahf
    fild1                     ; if st=0, exit returning 0
    fsub st(4), st           ; st=1, st(4)=counter
    fcomp st(4)              ; st=1, st(4)=counter-1
    fnstsw ax                ; compare 1 and st(4) and pop
    shr ah, 1                ; the stack
    jc L                     ; st=round(product/p)*p
S:                             ; store the status word in ax
    fstp st(3)              ; it is faster than sahf
    fnstsw ax                ; repeat the loop if the
    and ah, 1                ; counter is > 1
    jc L                     ; exit with clearing the stack
    fcompp                   ; put the return value at the
    fcompp                   ; bottom
    fcmp st(4)               ; clear the floating point
    fcompp                   ; stack
    ret                      ; end of the function
E:                             ; the exit label
    ret                      ; return st
Fmodm   endp

To make a dll, we can use the same Makeit.bat file, but Facmod.def should be modified by adding new exports,

Facmod.def
LIBRARY   Facmod
EXPORTS   Facmodp
EXPORTS   Facmodm
EXPORTS   Fmodp
EXPORTS   Fmodpl
EXPORTS   Fmodm
In Maple, we can define the external call to Fmodm similarly to the external call to Fmodp,

```maple
> Fmodm := define_external(
 'Fmodm',
 'n'::integer[8],
 'm'::integer[8],
 'RETURN'::float[8],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
):
```

Test its speed on the same example,

```maple
> time(Fmodm(10^8,10^8+7));
```

```
14.221
```

Certainly, Fmodm is faster for composite p,

```maple
> time(Fmodm(10^8,10^8+9));
```

```
0.090
```

Finally, we can write a module FactorialMod similar to the module Facmod and including its functions modified by using external calls to Fmodp1 and Fmodm for n and/or p greater than \(2^{32}-1\).

**FactorialMod module**

```maple
> FactorialMod := module()
local Facmodp, Facmodm, Fmodp1, Fmodm;
export facmod, facmodp, facmodm;
description "The functions in this module calculate n! mod \(p\). If \(p\) is prime, facmodp(n,p) should be used. If \(p\) is composite, facmodm(n,p) should be used. If \(p\) can be prime or composite, facmod(n,p) should be used. If \(n\) and/or \(p\) are greater than \(2^{49}\), result may be wrong.";
Digits := max(15, Digits);
Facmodp := define_external(
 'Facmodp',
 'n'::integer[4],
 'p'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
Facmodm := define_external(
 'Facmodm',
 'n'::integer[4],
 'm'::integer[4],
 'RETURN'::integer[4],
 'LIB'="F:/MyProjects/Assembly/Facmod/Facmod.dll"
);
Fmodp1 := define_external(
 'Fmodp1',
```
facmodp := proc (n::nonnegint, p::posint)
    local r;
    if p <= n then return 0
    elif n = 0 then return 1
    elif p > 4294967295 then
        if p > 562949953421312 then WARNING("result may be wrong") end if;
        if 1/2*p < n then
            if n = p-1 then return p-1 else return `mod`((-1)^(p-n)/round(Fmodp1(p-n-1,p)),p)
        end if;
        else return `mod`(round(Fmodp1(n,p)),p)
    end if;
    elif 1/2*p < n then
        if n = p-1 then return p-1
        elif p < 2147483648 then r := Facmodp(p-n-1,p)
        else r := Facmodp(p-n-1,p-4294967296)
        end if;
        return `mod`((-1)^(p-n)/`if`(r < 0,4294967296+r,r),p)
    else r:=Facmodp(`if`(n<2147483648,n,n-4294967296),`if`((p<2147483648,p,p-4294967296)) end if;
        `if`(r < 0,4294967296+r,r)
    end proc;
facmodm := proc (n::nonnegint, p::posint)
    local r;
    if p <= n then return 0
    elif p > 4294967295 then
        if p > 562949953421312 then WARNING("result may be wrong") end if;
        return `mod`((round(Fmodm(n,p)),p))
    else
        r:=Facmodm(`if`((n<2147483648,n,n-4294967296)) end if;
        r
Conclusion
As we saw here, the interaction between Maple and assembly language can be very fruitful. A DLL written in assembler provides speed unavailable in Maple or DLL written in high level languages. Maple, from another point of view, adds its symbolic capabilities making the calculations much faster by using division modulo $p$ and isprime function in this example. The future improvements could be made by replacing the line "if $p \leq n$ then return 0" in the facmod procedure by including more sophisticated conditions guaranteed that $n! = 0 \mod p$ for composite $p$. For a specific processor, the assembler code could be further optimized. Other improvements could be achieved by using the gmp library supplied with Maple 9. It would be interesting to find a precise bound $M$ such that all $\text{Fmodp1}(n, p)$ give the correct answers for positive integers $n$ and $p$ less than $M$.


I would like to thank my beautiful and wonderful wife, Bette for her support.

References

Disclaimer: While every effort has been made to validate the solutions in this worksheet, Dr. Alec Mihailovs is not responsible for any errors contained and is not liable for any damages resulting from the use of this material.

Copyright © 2004 Alec Mihailovs