Department of Chemistry Mission Statement

Mission/Vision/Goal Statement
The primary mission of the Department of Chemistry is the education of students at Tennessee Technological University. The goals of the department are based on state and national needs and are consistent with the philosophy of certification of the American Chemical Society which approves the curriculum for students wishing to become professional chemists. The offerings in chemistry are designed to develop an understanding of the relation of chemistry with daily life for all students and to prepare students for careers in chemistry and in related scientific, medical, and technological fields. The goal is also to provide both undergraduate and graduate students the facilities, opportunity, and inducement to conduct, evaluate, and report on original research under the supervision of a faculty mentor and thereby add to the knowledge of mankind while participating in team-based approaches to learning that are likely to be encountered in a graduate’s career.

Program Description

Mission/Vision/Goal Statement
Undergraduate Program: BS Chemistry Program Description

Concentrations (abbreviations):

CHMA – ACS certified Chemistry Major
CHMP – Pure Chemistry Major

CHMN – Applied Chemistry Major

CHMN – Biochemistry Major

Catalog Program Listings (revised in 2008 to provide enhanced student learning outcomes)

CHMA: The A.C.S. concentration is intended to prepare students for graduate school or to pursue chemistry as a profession in industry.

CHMP: The CHMA concentration was renamed CHMP in 2008 (Pure Chemistry), in part due to the changes made by the American Chemical Society for certification of degrees since ACS dissolved each of its degree programs and asked Universities to develop their own programs in line with program strength, regional needs and student need. The CHMP concentration exceeds the minimum requirements for ACS certified degrees.

CHMN: The Applied Chemistry concentration was originally (2005) intended to serve pre-professional students and those who do not intend to pursue graduate study in chemistry. Since the American Chemical Society dissolved all of its degree programs and asked Universities to develop degree programs that addressed student need and took advantage of program strength, we chose to act on this request immediately. TTU Chemistry was one of the first departments to create new curricula meeting certification requirements in the country. With the involvement of TTU Chemistry Alumni (and some Chemistry Advisory Board Members), we developed the following Options within Applied Chemistry, each of which is certifiable by the American Chemical Society if certain required course substitutions are made in the students program of study.

a. Business Chemistry – This option is intended for those who are more interested in the business side of the chemical industry or in a management career in a technical industry. The non-chemistry component of this option includes most, if not all, of the coursework necessary to enter the +1 MBA program offered by the TTU College of Business.
b. Environmental Chemistry – Chemistry plays a central role in all environmental issues. No student can be considered prepared to contribute to this field without a solid background in chemistry. This option incorporates a significant amount of supporting coursework in contributing sciences, such as biology, agriculture, and geology.

c. Forensic Chemistry – Forensic science is an interdisciplinary field incorporating aspects of chemistry, biology, and physics. While it is certainly an area of current popular interest, it has long been a career pathway for chemistry graduates, whose curriculum fits these demands particularly well. This option combines the essential elements of chemistry with supporting coursework in biology and criminal justice.

d. Health Sciences Chemistry - This option provides a four-year content degree in chemistry for students who have pursued non-degree curricula in pre-medicine, pre-dentistry, pre-pharmacy, pre-optometry and other related pre-health programs. Supporting coursework in biology is chosen from those courses required or encouraged by professional schools.

e. Industrial Chemistry – This option is intended for students who wish to pursue a technical career in a chemistry-related industry. Many companies seek employees with a chemical background but do not need the rigorous training found in the ACS Chemistry concentration. An integral part of this program is a minimum of one year of cooperative employment experience.

f. Chemistry – This option maintains the flexibility of the current program, allowing adaptation to new areas of interest as they develop.

CHMB: The Biochemistry concentration is intended to serve pre-professional students and those who wish to pursue graduate work at the chemistry-biology interface.

Update: Only superficial changes were made to this program as a result of the new certification requirements of the American Chemical Society. This degree remains basically the same as it was in 2005.

Outcome 1: Mastery of Factual Knowledge

Define Goal
Senior chemistry majors in all three concentrations will be able to demonstrate a mastery of factual knowledge comprehensively across the four principal areas of
chemistry (organic, inorganic, physical, and analytical), and be able to analyze and solve problems, understand relationships, and interpret scientific facts and data. cohort = CHMA(CHMP), CHMB, CHMN

Intended Outcomes / Objectives

Outcome 2: High Level of Critical Thinking

Define Goal
Senior chemistry majors in all three concentrations will be able to demonstrate a high level of critical thinking and reasoning ability within the context of the chemical discipline. cohort = CHMA(CHMP), CHMB, CHMN

Intended Outcomes / Objectives

Outcome 3: Mastery of Modern Factual Knowledge in Biochemistry

Define Goal
Senior chemistry majors in the biochemistry concentration will be able to demonstrate a mastery of modern factual knowledge in the biochemistry sub-discipline. cohort = CHMB

Intended Outcomes / Objectives

Outcome 4: Demonstrate Computer Proficiency

Define Goal
Senior Chemistry majors in all concentrations will be able to access computers and demonstrate proficiency in using computers to solve problems in chemistry. cohort = CHMP, CHMB, CHMN.

Intended Outcomes / Objectives

Outcome 5: Successful matriculation to Industry, Graduate and Professional Health Science Schools
Define Goal
Chemistry BS Graduates will be successful in gaining entrance into high quality graduate schools in chemistry, admission to professional schools, and securing quality careers in the chemical sciences. cohort =CHMP, CHMB, CHMN

Intended Outcomes / Objectives

Outcome 6: Integrate Chemical Knowledge with Research & Team-Based Learning

Define Goal
Senior chemistry majors in the ACS and biochemistry concentrations by the time of graduation will be able to demonstrate ability to integrate chemical knowledge in the successful conduct of undergraduate research projects as well as work well in team-based research. cohort =CHMP, CHMB, CHMN.

Intended Outcomes / Objectives

Outcome 7: CHEM 1110/1120 ACS Exam Score Improvement

Define Goal
Students completing the main sequence general chemistry CHEM1110/1120 will be able to demonstrate a thorough knowledge of general chemistry as evidenced by exceeding the average score on the National ACS General Chemistry Exam.

Intended Outcomes / Objectives

Program Goal 1: Increase External Funding

Define Goal
Increase external funding by 5% per year to improve quality of research.

Intended Outcomes / Objectives
Program Goal 2: Chemistry Department Advisory Board Growth and Utilization Expansion

Define Goal
Establish and strategically expand the Chemistry Department Advisory Board

Intended Outcomes / Objectives

Assessment: ACS National & Internally Generated General Chemistry Exams

Goal/ Outcome/ Objective: Outcome 7

Type of Tool: National Accrediting Agency Requirements and Standards

Rationale
The National ACS General Chemistry exam, purchased from the ACS-CPT and given to all of our students in CHEM 1120 each Spring semester, is useful since it contains the scores of hundreds of students from a large number of Universities nationwide. Results are shared with faculty and discussed at faculty meetings and retreats. Comparable internally generated common exams are also created and in those cases, student improvement is based on year-to-year performance.

Frequency of Assessment: Annual

Assessment: Chemistry Department Annual Report

Goal/ Outcome/ Objective: Outcome 5 & 6, Program goals 1 & 2

Type of Tool: Annual Unit Report

Rationale
Matriculation to graduate and professional schools as well as the number of students conducting research during the academic year and/or presenting research at regional and national scientific meetings are collected and tabulated in the annual report.

Also tabulated in the chemistry department annual report are published manuscripts, submitted grants and funded grants.

Chemistry Department Advisory Board growth, expansion and utilization is also tabulated in the department's annual report as well as discussed at faculty meetings and/or retreats. A Chemistry advisory board (Program Goal 2) will help us with curriculum evolution as well as with targeted fund-raising. Such changes to the curriculum is also discussed at faculty meetings/retreats.

Frequency of Assessment: Annual
Assessment: ETS Chemistry Field Exam
Goal/ Outcome/ Objective: Outcome 1, 2 & 3
Type of Tool: Exit Exam

Rationale
Student performance on the national ETS Chemistry Field Exam in the four branches of chemistry (referred to as subscores 1 through 4) for Outcome 1. Student performance, Assessment Indicator #2 (Critical Thinking and Reasoning Ability) for Outcome 2. Senior performance on the ETS Chemistry Field Exam - Assessment indicator #1 (Biochemistry knowledge assessment) for Learning Outcome 3.

- This **mastery level** by TTU students on the ETS Field Exam, which should exceed the national average for CHMA majors as demonstrated on the ETS Chemistry Field Exam, is discussed at faculty meetings (cohort = CHMA(CHMP), CHMB, CHMN).
- This **mastery level** by TTU students for **critical thinking** and reasoning ability on the ETS Field Exam that should meet or exceed the national average for chemistry majors as demonstrated on the ETS Chemistry Field Exam is discussed with faculty at faculty meetings (cohort = CHMA (CHMP), CHMB, CHMN)
- This **mastery level** by TTU CHMB students on the ETS Field Exam, which should **exceed the national average as demonstrated on the Biochemistry knowledge assessment** of the ETS Chemistry Field Exam, is taken into consideration during faculty planning for our one-year intensive biochemistry course (cohort = CHMB)

Frequency of Assessment: Annual

Assessment: Graduating Senior Survey
Goal/ Outcome/ Objective: Outcome 6
Type of Tool: Survey

Rationale
Graduating Senior Surveys provide a variety of data about the program and is discussed at faculty meetings and faculty retreats in order that the faculty have the opportunity to assess/reflect on student outcome goals. cohort = CHMP, CHMB, CHMN

Graduating Senior Survey: (now completed online through use of Google Docs) is shown in brief below but also provided as an attachment.

TTU DEPARTMENT OF CHEMISTRY GRADUATING SENIOR SURVEY

<table>
<thead>
<tr>
<th>Major:</th>
<th>Emphasis Area:</th>
<th>Advisor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years at TTU:</td>
<td>Years in the Department:</td>
<td>Original major at</td>
</tr>
</tbody>
</table>
TTU:

Please rate your satisfaction or estimate the quality of the following items:

1 = Poor 2 = Fair 3 = Good 4 = Excellent 5 = Not applicable to me

Quality of courses in preparing me for employment/graduate school 1 2 3 4 5
Quality of instruction in:
General Chemistry
Organic Chemistry
Analytical Chemistry
Inorganic Chemistry
Physical Chemistry
Biochemistry
Fairness in grading my courses
Availability of required courses
Opportunity for student evaluation of instruction
Quality of general education courses
Organization and clarity of curriculum requirements
Opportunities for personal interactions with faculty
Opportunities for students to participate in faculty research
Availability of advisor
Willingness of advisor to assist
Quality of curricular advising in chemistry
Quality of career advising in chemistry
Quality of classroom facilities
Quality of laboratory facilities
Quality of TTU library chemistry holdings
Quality of computer support
Availability of professional activities or clubs in the department
Assistance given be departmental secretary
Assistance given by stockroom manager
Quality of my initial contact with the department
Opportunity for student participation in departmental decisions
Overall quality of the department
Overall satisfaction with degree program

Please take time to share your thoughts and perceptions of the Department in order to foster the improvement of its program and faculty.

List or discuss the strengths of the department, faculty, and degree program.
List of discuss the weakness of the department, faculty, and degree program.

Any suggestions you may have to improve the department, its faculty, and programs would be appreciate

Graduating Senior Survey

Frequency of Assessment: Annual

Assessment: National Survey of Student Engagement (NSSE)
Goal/ Outcome/ Objective: Outcome 4
Type of Tool: Focus Group

Rationale
Initially the Enrolled Student Survey was used for as an assessment tool, however, that tool was replaced with the NSSE in 2009. This tool is useful to collect information related to computer use by students.

Through monitoring the responses of freshmen and senior chemistry majors where students are asked how often they have worked an assignment where a computer was used, an increase should be observed. Faculty are encouraged at faculty meetings to continue to provide such exercises. cohort =CHMP, CHMB, CHMN.

Frequency of Assessment: Annual

Assessment: SciFinder Scholar
Goal/ Outcome/ Objective: Program Goal 1
Type of Tool: Other

Rationale
In order to assess our goal of increasing research productivity, SciFinder scholar is used to determine the number of peer-reviewed publications in each two-year period. The chemistry department annual report is generated each year and contains tabulated data such as **external funding dollars raised** and **numbers of manuscripts published** via SciFinder Scholar to show progress in research productivity, in part, as a **funding outcome**.

Funding opportunities (Program Goal 1) are **discussed at faculty meetings** or
distributed via email. The chair will also make subsets of faculty aware of funding opportunities as he receives them from various institutional sources, such as the Office of Research, The Water Center or the Dean of Arts & Sciences.

Frequency of Assessment: Annual

Results: Chemistry Advisory Board

Goal/Objective/Outcome Number: Program Goal 2

Results

As indicated in the Chemistry Department Annual Report, **Program Goal 2 is being met**, as several board members were identified and currently serve in a strategic manner. In Spring 2016, Dr. Sullivan Smith was added to our board and serves as both a Health-Science representative and a Forensic representative. No additional members have been added this year.

Attachments

No items to display.

Results: ETS Chemistry Field Test

Goal/Objective/Outcome Number: Outcome 1, 2 & 3

Results

1. The national median varies each year between 147.0 and 149 (using nationwide institutional data) and 146.0-148.0 (using nationwide individual student scores). Thus, for example, in 2012-2013 our student average score of 152 was in the 60th percentile when compared to both institutional medians and individual score medians when compared to all of the students that took this exam (typically > 5000 students). The 2016 National average was 148.

<table>
<thead>
<tr>
<th>Test Date (Avg F/S)</th>
<th>Total</th>
<th>National %ile (institutional avg/individual score average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008-2009 146</td>
<td></td>
<td>43/48</td>
</tr>
<tr>
<td>2009-2010 145</td>
<td></td>
<td>45/40</td>
</tr>
<tr>
<td>2010-2011 147.1</td>
<td></td>
<td>51/46</td>
</tr>
<tr>
<td>2011-2012 144</td>
<td></td>
<td>50/43</td>
</tr>
<tr>
<td>2012-2013 152</td>
<td></td>
<td>60/60</td>
</tr>
<tr>
<td>2013-2014 151</td>
<td></td>
<td>60/60</td>
</tr>
<tr>
<td>2014-2015 152</td>
<td></td>
<td>61/63</td>
</tr>
<tr>
<td>2015-2016 150</td>
<td></td>
<td>58/61</td>
</tr>
</tbody>
</table>
2. This was a new learning outcome in 2005-06 made available by the availability of this Assessment Indicator on the ETS Exam. When compared to 227 other Universities median scores, TTU Chemistry graduates scored in the following national percentiles for critical thinking (2009-2014); 41, 44, 64, 48, 60 and 60 respectively.

3. While the ETS Chemistry Biochemistry Assessment indicator does not reflect an actual Biochemistry exam, it does incorporate questions which allow assessment of biochemical knowledge, thus, we have tracked these scores between 2007 and 2017. Likely in part due to the nature of this assessment indicator (where questions that relate to Biochemistry and pulled from the four actual sections of the Chemistry exam), our scores have been quite variable. For example, in the Fall of 2006, we scored in the 99 percentile, but in the following Spring (2007) we scored in the 76 percentile. The actual percentiles observed Spring 2009-Spring 2017 are 68, 82, 76, 61, 57, 57, 63, 52 and 48. The ACS Biochemistry exam has been much more reliable as this is an actual Biochemistry exam written by the American Chemical Society. However, only students taking the full year Biochemistry sequence take this exam. Between 2009 and 2016, TTU students scored in the following percentiles; 61, 65, 71, 65, 69, 60, 63 and 60. For a regional, rural university, these are respectable percentiles.

Attachments
No items to display.

Results: External Funding
Goal/Objective/Outcome Number: Program Goal 1

Results
The following table tabulates acquired funding by the department of Chemistry faculty since 2005. To provide an historical perspective: the four-year total research funding level in the department 1998-2002 was an average of $121K per year. Our target is a research funding level that increases by 5% per year over the $121K per year average. We have dramatically exceeded this goal (nearly tripled) as seen in the table below (Ref. Delaware Reports 2005-2006 through 2009-2010 and the Chemistry Annual Reports through 2016).

<table>
<thead>
<tr>
<th>Academic Year Level</th>
<th>Total New Awards</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006-2007</td>
<td>$1,037,689</td>
<td></td>
</tr>
<tr>
<td>$126K</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2007-2008 $36,300
2008-2009 $283,013
2009-2010 $103,000
2010-2011 $122,253
2011-2012 $236,957
2012-2013 $94,309
2013-2014 $568,600
2014-2015 $725,046
2015-2016 $1,437,827
Total last 12 years $5,310,280

Attachments
No items to display.

Results: NSSE

Goal/Objective/Outcome Number: Outcome 4 and Outcome 6

Results
Below is a compilation using a current assessment metric for 2009 and 2011 offered by the University. This data shows that more and more students in Chemistry are using computers during their tenure at TTU.

<table>
<thead>
<tr>
<th>Question</th>
<th>2009</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of problem sets (problem-based homework assignments) that take you MORE than an hour to complete</td>
<td>3.25</td>
<td>3.29</td>
</tr>
<tr>
<td>Freshman (1st year)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Senior (4th year)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>2.83</td>
<td>3.56</td>
</tr>
</tbody>
</table>
Institutional emphasis: Using computers

<table>
<thead>
<tr>
<th></th>
<th>Freshman (1st year)</th>
<th>13</th>
<th>Senior (4th year)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.46</td>
<td>8</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>in academic work</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.50</td>
<td>9</td>
<td>3.78</td>
</tr>
</tbody>
</table>

NSSE Question (2009 and 2011)

<table>
<thead>
<tr>
<th>NSSE Question (2009 and 2011)</th>
<th>Class Level</th>
<th>N</th>
<th>Mean</th>
<th>N</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practicum, Internship, field experience, co-op or clinical assignment</td>
<td>Freshman (1st Year)</td>
<td>13</td>
<td>3.00</td>
<td>8</td>
<td>2.75</td>
</tr>
<tr>
<td></td>
<td>Senior (4th Year)</td>
<td>11</td>
<td>2.00</td>
<td>9</td>
<td>3.44</td>
</tr>
<tr>
<td>Worked with faculty on activities other than coursework outside of class</td>
<td>Freshman (1st Year)</td>
<td>13</td>
<td>1.77</td>
<td>8</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Senior (4th Year)</td>
<td>12</td>
<td>2.00</td>
<td>8</td>
<td>2.63</td>
</tr>
<tr>
<td>Work on a research project with a faculty member outside of class or program requirement</td>
<td>Freshman (1st Year)</td>
<td>13</td>
<td>2.38</td>
<td>8</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>Senior (4th Year)</td>
<td>12</td>
<td>2.83</td>
<td>9</td>
<td>3.00</td>
</tr>
<tr>
<td>Culminating senior experience (capstone, senior project, thesis or comprehensive exam</td>
<td>Freshman (1st Year)</td>
<td>13</td>
<td>2.54</td>
<td>8</td>
<td>2.13</td>
</tr>
<tr>
<td></td>
<td>Senior (4th Year)</td>
<td>12</td>
<td>2.92</td>
<td>9</td>
<td>3.22</td>
</tr>
</tbody>
</table>

Attachments

No items to display.

Results: Chemistry Department Annual Report Data Excerpts

Goal/Objective/Outcome Number: Outcome 5 & 6 and Program Goal 1

Results

Outcome 5: A combination of the Chemistry Department Annual Report and the
Graduating Student Survey are used to compile a list of where our students go when they leave TTU. This is tabulated in the attached file as TTU Chemistry B.S. Graduates. Where are they now? Since 2008 we have had students gain entry and successfully matriculate from Universities and Professional Schools throughout the US and the nation. One of our recent graduates just completed his PhD at the University of Chicago and is now a post-doc at Northwestern and three of our Biochemistry graduates just completed medical school at the University of Alabama-Birmingham (UAB). Another chemistry graduate just finished his third year at the University of Virginia Medical School.

Outcome 6: Data from the Chemistry Department Annual Report and ACS National Meeting Programs are used to tabulate the number of active students in research and the number of students presenting their research at national ACS meetings. Since 2007, TTU chemistry has sent either the highest, or the second highest number of undergraduate students to the national ACS meeting to present the results of their research. Since the ESS exam is no longer an available assessment tool, the department has used as a metric the number of students undertaking undergraduate research and the number of students disseminating that research at a national meeting as an assessment indicator. The following table tabulates the participation of undergraduates at the National meeting of the ACS. NSSE data, as well as Graduating Student Surveys also further illustrate the availability of research as seen through the eyes of a subset of freshmen and graduating chemistry majors in 2009 and 2011. Of those that took the NSSE survey in 2009 and 2011, an increase is noticed in the number of upperclassmen planning to conduct some form of undergraduate research demonstrating students are becoming more and more aware of these opportunities.

Academic Year

<table>
<thead>
<tr>
<th>Academic Year</th>
<th>Students Active in Undergrad Research</th>
<th>Research Presented at the National ACS Meeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-2017</td>
<td>72</td>
<td>15</td>
</tr>
<tr>
<td>(San Francisco, Ca)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015-2016</td>
<td>77</td>
<td>26</td>
</tr>
<tr>
<td>(San Diego, Ca)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014-2015</td>
<td>77</td>
<td>26</td>
</tr>
<tr>
<td>(Denver, Co)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-2014</td>
<td>72</td>
<td>22</td>
</tr>
<tr>
<td>(Dallas, Tx)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-2013</td>
<td>71</td>
<td>15</td>
</tr>
<tr>
<td>(New Orleans, La)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2011-2012</td>
<td>67</td>
<td>12</td>
</tr>
<tr>
<td>(San Diego, Ca)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2010-2011</td>
<td>53</td>
<td>17</td>
</tr>
<tr>
<td>(Anaheim, Ca)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Program Goal 1: Additional tabulated departmental funding results are shown under an additional results tab.

Attachments

Results: General Chemistry Exam
Goal/Objective/Outcome Number: Outcome 7

Results

Results of the ACS General Chemistry exam are shown in the table below:

2003-2010 TTU General Chemistry Assessment (National Norm=47.7%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Score</th>
<th>Year</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>49.6</td>
<td>2006</td>
<td>52.1</td>
</tr>
<tr>
<td>2009</td>
<td>52.1</td>
<td>2005</td>
<td>52.0</td>
</tr>
<tr>
<td>2008</td>
<td>51.0</td>
<td>2004</td>
<td>53.0</td>
</tr>
<tr>
<td>2007</td>
<td>51.8</td>
<td>2003</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Beginning Spring 2013, we began offering the GenChem13 ACS exam, thus, a new assessment cycle commenced. The National norm of the new exam is 52.

2013-Present TTU General Chemistry Assessment (National Norm=52.0%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Average Score</th>
<th>Year</th>
<th>Average Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>52.8</td>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td>56.3</td>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>57.2</td>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>59.0</td>
<td>2020</td>
<td></td>
</tr>
</tbody>
</table>
Modifications and Continuing Improvement: Outcome 1
Goal/Objective/Outcome Number: Outcome 1

Program Changes and Actions due to Results
For Student Learning Outcome 1, as assessed by the ETS Field exam for student performance in chemistry, the department continues to stress the importance of introducing new pedagogy in the classroom. The department formed an ad hoc committee to develop a platform for enhanced chemistry learning/tutoring through exploitation of desire-2-learn and PenCasts (Chemical Solutions). Laboratory equipment purchased with funds provided to the science departments in the College of Arts and Sciences are used to a greater extent in upper division chemistry classes. Those funds have been used to purchase an FTIR instrument, a Gas Chromatograph, a Raman Spectrometer and an Ion Chromatograph in order to enhance upper division laboratory experiences and undergraduate research. The department recently purchased an evaporative light scattering detector (ELSD) for a liquid chromatograph and a new FT-Infrared Spectrometer. These funds were also used to purchase the appropriate hood enclosures for working with both prokaryotic and eukaryotic cell lines to enhance cross-disciplinary studies in both academic labs and research labs. We also purchased a gel imaging system. These activities will continue as we move forward. External funding has also been sought: Faculty received funding for the purchase of a Bioanalyzer, a PCR machine and a NanoDrop spectrometer from NSF to further enhance these laboratory experiences. A team led by Dr. Carrick was successful obtaining an NSF-MRI grant to purchase a new NMR with a cryo-probe. This provides a giant step forward in organic chemistry, inorganic chemistry and biochemistry. In addition, a greater number of students started carrying out undergraduate research during the academic year - oftentimes utilizing this newly acquired instrumentation in their research.

Link to Assessment

Link to Flight Plan: Technology in Teaching, Improve Undergraduate Student Experience
Modifications and Continuing Improvement: Outcome 2
Goal/Objective/Outcome Number: Outcome 2

Program Changes and Actions due to Results
For Student Learning Outcome 2, as assessed by the ETS Field Exam, we continue to stress the importance of undergraduate research as a means by which students can increase critical thinking and problem-solving ability. In the last two years, as a result of these efforts, we have been maintaining approximately 50% of all of our students involvement in undergraduate research (Flight Plan Link: Improve Undergraduate Experience). It is possible that the increase in numbers of students undertaking undergraduate research and being exposed to the advanced instrumentation in Learning Outcome 1 may have contributed to our higher score this past year. In addition, additional guided-inquiry experiments have been added to laboratory experiences in General Chemistry and Biochemistry. We plan to once again hold our research mini-symposia on Aug. 31st, 2017 in hopes to attract many new Freshmen and Sophomores into the research labs (regardless of major).

Link to Assessment
ETS Field Exam for Chemistry

Link to Flight Plan: Improve Undergraduate Student Experience

Modifications and Continuing Improvement: Outcome 3
Goal/Objective/Outcome Number: Outcome 3

Program Changes and Actions due to Results
For Student Learning Outcome 3, as assessed by the ETS Field exam and the National ACS Biochemistry Exam, we have added an additional section of CHEM 4610/4620 which initially reduced the student-to-teacher ratio to only up to 40 students per section. Now that we do this each year and offer a trailer section in the Spring semesters, the student-to-teacher ration has dropped further. Our scores on the ACS standardized exam have remained about the same. In order to improve these scores, the department started utilizing a more advanced text book authored by Garrett & Grisham (Brooks/Cole Publishing). During 2013-2014 we added online homework in Biochemistry (same text) which was well-received by the students. This was continued during 2014-2015 and 2015-2016. During 2017-2018 we are moving to the new edition of this textbook (6th edition), and as a consequence, we are moving to Owl 2.0 for assisted learning and online homework.

Link to Assessment

Link to Flight Plan: Improve Undergraduate Student Experience
Modifications and Continuing Improvement: Outcome 4
Goal/Objective/Outcome Number: Outcome 4

Program Changes and Actions due to Results
For Student Learning Outcome 4, as assessed by the National Survey of Student Engagement (NSSE) for proficiency and use of computers, we promote the use of email, D2L (iLearn) and computer-based assignments as supplemental aids to instruction. We continued to use online homework in general chemistry and began implementing this type of system in upper division courses, such as Analytical Chemistry (2010), Organic Chemistry (2012) and Biochemistry (2013). We switched to WebAssign online homework for two years in general chemistry, but after multiple problems with the company, and a lack of student improvement, we switched back to using OWL online homework in General Chemistry. In Fall 2014, in hopes of further improving student success, we moved to the “atoms first” teaching pedagogy as well as an advanced online homework system. More new experiments were implemented based on modern computer-interfaced instrumentation, such as the acquisition of the MeasureNet system in General Chemistry ($100K). The MeasureNet system allows for a greater number of guided-inquiry type experiments furthering the computational experience of TTU students taking Chemistry classes. A new team-taught course in computational chemistry was added to the curriculum in 2012 and has continued. The Enrolled Student Survey was abandoned by TTU shortly after 2005-2006. It was replaced by the NSSE survey for which we have 2009 and 2011 data at this time. As a result of the prior ESS data, faculty in the department of Chemistry continued to increase the use of computers in instruction. This has included on-line homework in multiple classes, the requirement of utilizing spreadsheets in general chemistry, and increasing use of computers via on-line literature searches required in multiple classes, etc. We have requested the chemistry student data be pulled from the NSSE 2014 and 2016 data sets in order to assess that data. Additional modifications may result after that data is analyzed.

Link to Assessment

Link to Flight Plan: Technology in Teaching, Improve Undergraduate Student Experience

Modifications and Continuing Improvement: Outcome 5
Goal/Objective/Outcome Number: Outcome 5

Program Changes and Actions due to Results
Student Learning Outcome 5, as assessed by a combination of the Chemistry Department Annual Report and the Graduating Student Survey, now addresses all of our concentrations in Chemistry (CHMA, CHMP, CHMB and CHMN) since degree certification requirements changed in 2008. This learning outcome has been successful. Students from all of the above concentrations are leaving TTU to
attend graduate and professional schools. In order to further increase the success of our students, we have made career options more available to students through expanded board space in high traffic hallways for postings of relevant coop and intern experiences, graduate school posters, and some types of job postings. Faculty have been formally put in charge of this and post these opportunities on bulletin boards in hallways and classrooms. The additional importance placed on undergraduate research since 2007 has raised the awareness of the importance of planning for graduate and professional schools. In 2008, the department initiated the Student Research Development Grant program, an in house program that provides opportunities for students to write research grants, submit them for review, carry out their proposed research and disseminate their research. In the last two years, ~$30,000 has been awarded to successful students (2015-2017).

Link to Assessment
Annual Report and Graduate Student Surveys

Link to Flight Plan: New Graduate Programs

 Modifications and Continuing Improvement: Outcome 6
Goal/Objective/Outcome Number: Outcome 6

Program Changes and Actions due to Results
As also described in the Chemistry Department Annual Report, we have made excellent progress towards Student Learning Outcome 6 by continuing to take an active role in promoting involvement of every qualified undergraduate major in an undergraduate research project with a faculty member. Beginning in 2007, we initiated a Fall research mini-symposia followed by a cook-out social for the purpose of making undergraduates more aware of research opportunities in the department. Multiple faculty give 10-15 minute presentations about project opportunities in their labs. This resulted in an immediate increase in the number of students both carrying out research in faculty labs, but also in the number of students presenting the results of their research at scientific meetings (see assessment results). We continue to keep students informed about summer research activities in government, industrial and academic research laboratories. Faculty encourage their students to apply for coop and internship experiences, and apply for Chapter 606 funds for undergraduate research projects, in addition to the Student Research Development Grants (SRDG) mentioned in Learning Outcome VI. In 2008, the year the SRDG was initiated, $2,800 was awarded; in 2009, $5,600 was awarded and in 2010, $10, 543 was awarded. In Fall 2011, an additional $4,185 was awarded during the first of four submission dates during the 2011-2012 academic year. Funds awarded during 2012-2013 exceeded $11,000 as they did during 2013-2014 and 2014-2015, 2015-2016 and 2016-2017. The funds awarded in this program are generated through the sale of department-authored laboratory manuals. We also take advantage of the Jackson/Swindell Undergraduate Research Award program and
have funded at summer stipends to assist additional students remain on campus throughout the summer to carry out undergraduate research. This year (Spring 2017), two students applied for and received this grant.

Link to Assessment
Annual Report

Link to Flight Plan: Improve Undergraduate Student Experience

Modifications and Continuing Improvement: Outcome 7

Goal/Objective/Outcome Number: Outcome 7

Program Changes and Actions due to Results

For continued success in Student Learning Outcome 7, the department feels that our students should be able to outperform the established national norms (50.2% average score) on the National ACS General Chemistry Exam on a consistent basis. In order to firmly establish this goal as a trend, the department has continued its prior actions of utilizing on-line homework for assessment, adding additional guided-inquiry experiments in the lab component of the course and utilizing the MeasureNet data acquisition system coupled to PC’s in the lab to further enrich student experience. The department of chemistry has continued to offer this exam each spring 2007-2010 as an assessment indicator. In addition, the department has worked tirelessly to seek and utilize the best tool for on-line homework in place on our campus. Between 2006 and now, we have utilized Owl, WebAssign and back to OWL. We believe online homework has dramatically improved learning. In 2014-2015 we moved to the “Atoms First” teaching pedagogy for General Chemistry which also included an online homework component. We continued using the atoms first approach during 2015-2016 and will do so next year. Scores on the ACS exam have been consistently above the national average (see Table under Results for trends). In Summer 2007 the department purchased the MeasureNet Laboratory Data acquisition/management system. This $100K investment provided students the opportunity to experience enhanced data collection in General Chemistry laboratory. Also in 2007, the department initiated a new course, CHEM 1000 which we initially called JumpStart Chemistry (it’s actually a principles course which strengthens a student’s ability to use algebra to solve chemistry problems). Incoming new students with a weak or no background in chemistry have the opportunity to take this course before they take the CHEM 1110/1120 sequence. Students are also allowed to transfer into this course if they are trying but failing CHEM 1110. Retention of these students has been very high following completion of CHEM 1000. The first cohort of 16 students graduated in Spring 2011 (100%) and all were retained in STEM majors, although two of those ended up with Nursing degrees. The assessment and development of CHEM 1000 will continue.

Link to Assessment
In house generated or national ACS chemistry exams

Link to Flight Plan: Improve Undergraduate Student Experience

Modifications and Continuing Improvement: Program Goal 1
Goal/Objective/Outcome Number: Program Goal 1

Program Changes and Actions due to Results
For continued success in Program Goal 1, as assessed by the Chemistry Department Annual Report (indirect assessment) and SciFinder Scholar (direct assessment), grant writing by the faculty has been strongly encouraged and successful. NSF-CCLI instructional grants have been submitted and funded in order to obtain needed laboratory equipment to be used in research and teaching laboratories. Release time from teaching has been given to faculty receiving external funding for research. A differential teaching load was implemented to give faculty hours for grant writing, involvement of students in research, extensive service activities, and so forth. Several new faculty have recently been hired and each is required to vigorously pursue the acquisition of external funding. During 2013-2014, an interdisciplinary grant application between chemistry and chemical engineering was funded at $475,000 by the National Science Foundation. During 2015-2016 another interdisciplinary grant funded by NSF (~$600,000) provided the campus advanced NMR resources.

Link to Assessment
Chemistry Department Annual Report (indirect assessment) and SciFinder Scholar (direct assessment)

Link to Flight Plan: Create Distinctive Programs and Invigorate Faculty

Modifications and Continuing Improvement: Program Goal 2
Goal/Objective/Outcome Number: Program Goal 2

Program Changes and Actions due to Results
To continue to be successful in Program Goal 2, additional board members will be identified in a strategic manner as needs are identified, as indicated in the Chemistry Department Annual Report. The decision was made to form the board slowly over time as opportunities arose. Thus, the board is growing as alumni are positioned to assist the department with growth in a strategic manner. The board was initiated in 2007-2008 when we sought to add several concentrations within the Chemistry Degree and when we initiated the Analytical Services Program in the Department. For example, an alumnus (retired from Tennessee Eastman) was added and assisted with our development of a Business Chemistry Degree. He has visited the department regularly in the past four years, speaks to students and serves as an Alumni Mentor.
Another alumnus (Tennessee Bureau of Investigation) visits the department regularly, speaks to students and serves as an Alumni Mentor, as well. He assisted with the development of our Forensic Chemistry Degree, and according to him, it’s the only degree in the State of Tennessee that exactly meets their criteria for hire without the need for much additional training. An additional alum was selected this past year (2015-2016) to represent Health Science Chemistry and our Industrial Chemistry (Shell Oil) member remains on the board. We are currently pursuing a board member to represent Biochemistry and Environmental Chemistry, but the type of individual has not been strategically identified at this time. As our needs and opportunities grow, so will the alumni board.

Link to Assessment
Analytical Services Program

Link to Flight Plan: Improve Undergraduate Student Experience, Create Distinctive Programs and Invigorate Faculty